-
Notifications
You must be signed in to change notification settings - Fork 10
/
data.py
172 lines (133 loc) · 5.58 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch.utils.data as data
import os.path
from PIL import Image
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
import torchvision
torchvision.models.densenet121()
def default_loader(path):
return Image.open(path).convert('RGB')
def default_flist_reader(flist, root=None):
"""
flist format: impath label\nimpath label\n ...(same to caffe's filelist)
"""
imlist = []
with open(flist, 'r') as rf:
for line in rf.readlines():
impath = line.strip()
impath = impath if root is None else os.path.join(root, impath)
imlist.append(impath)
return imlist
class ImageFilelist(data.Dataset):
def __init__(self, root, flist, transform=None,
flist_reader=default_flist_reader, loader=default_loader):
self.root = root
self.imlist = flist_reader(os.path.join(root, flist))
self.transform = transform
self.loader = loader
def __getitem__(self, index):
impath = self.imlist[index]
img = self.loader(os.path.join(self.root, impath))
if self.transform is not None:
img = self.transform(img)
return img
def __len__(self):
return len(self.imlist)
class ImageLabelFilelist(data.Dataset):
def __init__(self, root, flist, transform=None,
flist_reader=default_flist_reader, loader=default_loader):
self.root = root
self.imlist = flist_reader(os.path.join(self.root, flist), root=root)
self.transform = transform
self.loader = loader
self.imgs = [(impath.split(' ')[0], impath.split(' ')[1]) for impath in self.imlist]
def __getitem__(self, index):
impath, label = self.imgs[index]
img = self.loader(os.path.join(self.root, impath))
label = int(label)
if self.transform is not None:
img = self.transform(img)
return img, label
def __len__(self):
return len(self.imgs)
###############################################################################
# Code from
# https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py
# Modified the original code so that it also loads images from the current
# directory as well as the subdirectories
###############################################################################
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def make_dataset(dir):
images = []
assert os.path.isdir(dir), '%s is not a valid directory' % dir
for root, _, fnames in sorted(os.walk(dir)):
for fname in fnames:
if is_image_file(fname):
path = os.path.join(root, fname)
images.append(path)
return images
class ImageFolder(data.Dataset):
def __init__(self, root, transform=None, return_paths=False,
loader=default_loader):
imgs = sorted(make_dataset(root))
if len(imgs) == 0:
raise (RuntimeError("Found 0 images in: " + root + "\n"
"Supported image extensions are: " +
",".join(IMG_EXTENSIONS)))
self.root = root
self.imgs = imgs
self.transform = transform
self.return_paths = return_paths
self.loader = loader
def __getitem__(self, index):
path = self.imgs[index]
img = self.loader(path)
if self.transform is not None:
img = self.transform(img)
if self.return_paths:
return img, path
else:
return img
def __len__(self):
return len(self.imgs)
def get_data_file_list(root, file_list, batch_size, train, num_workers=0, new_size=236, crop_size=224):
if train:
transform = transforms.Compose([
transforms.Scale(new_size),
transforms.RandomSizedCrop(crop_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
else:
transform = transforms.Compose([
transforms.Resize((crop_size, crop_size)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
dataset = ImageLabelFilelist(root, file_list, transform=transform)
loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=train, drop_last=True, num_workers=num_workers)
return loader
def get_all_data_loaders(conf, train_file_name='train.txt', test_file_name='test.txt', keep_ori=False):
batch_size = conf['batch_size']
num_workers = conf['num_workers']
if 'new_size' in conf:
new_size = conf['new_size']
else:
new_size = conf['new_size']
height = conf['crop_image_height']
if keep_ori:
new_size = None
train_flag = False
else:
train_flag = True
train_loader_with_atk = get_data_file_list(conf['data_root'], train_file_name, batch_size,
train_flag, num_workers, new_size=new_size, crop_size=height)
test_loader = get_data_file_list(conf['data_root'], test_file_name, batch_size, False,
num_workers, new_size=new_size, crop_size=height)
return train_loader_with_atk, test_loader