forked from anne-urai/2022_Urai_choicehistory_MEG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
heartrate_summarize.m
176 lines (148 loc) · 6.95 KB
/
heartrate_summarize.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
function [] = heartrate_summarize()
% for each file, read in the full timecourse of channel EEG059 and compute
% heart rate. Then compare this over the two sessions, for each drug group
addpath(genpath('~/code/MEG'));
addpath('~/Documents/fieldtrip/');
ft_defaults; warning off;
% get Sven's rejection matrix
load(sprintf('%s/EKG/heartRateReject_Sven.mat', subjectdata.path));
reject.Sven = APPROVE_TRIAL;
reject.bpmTooLow = nan(size(reject.Sven));
% ==================================================================
% EXTRACT ALL THE HEARTRATES
% ==================================================================
subjectdata = subjectspecifics('ga');
subjects = subjectdata.all;
% preallocate variables
varnames = {'subjnr', 'session', 'block', 'heartrate'};
results = array2table(nan(length(subjectdata.all)*20, length(varnames)), 'variablenames', varnames);
results.drug = repmat({'NaN'}, length(subjectdata.all)*20, 1);
icnt = 0;
for sj = (unique(subjects)),
subjectdata = subjectspecifics(sj);
for session = 1:length(subjectdata.session),
% ==================================================================
% preprocess all the EKG signals
% ==================================================================
if ~exist(sprintf('%s/EKG/P%02d-S%d_ekg.mat', subjectdata.path, sj, session), 'file'),
continue;
end
load(sprintf('%s/EKG/P%02d-S%d_ekg.mat', subjectdata.path, sj, session));
cfg = [];
cfg.demean = 'yes';
cfg.detrend = 'yes';
cfg.resamplefs = 100;
data = ft_resampledata(cfg, data);
cfg = [];
cfg.bpfreq = [5 40];
cfg.bpfilter = 'yes';
data = ft_preprocessing(cfg, data);
% do peakdetect on each 'trial' (=block)
for t = 1:length(data.trial),
icnt = icnt + 1;
results.subjnr(icnt) = sj;
results.session(icnt) = session;
results.block(icnt) = t;
results.drug(icnt) = {subjectdata.drug};
% switch so that peaks are upwards
data.trial{t} = -data.trial{t};
% ==================================================================
% HEART RATE
% ==================================================================
maxbpm = 150; % maximum heartrate I think is acceptable
distancebetweenpeaks = 1 / (maxbpm / 60) * data.fsample; % convert into distance between peaks
[vals, peaklocations] = findpeaks(double(data.trial{t}), ...
'MinPeakDistance', distancebetweenpeaks, 'MinPeakHeight', 5*10^-4);
% visualize the detection
if 0,
clf;
totallength = max(data.time{t});
nsubpl = 10;
for sp = 1:nsubpl,
subplot(nsubpl,1,sp);
plot(data.time{t}, data.trial{t}, 'k'); hold on;
plot(data.time{t}(peaklocations), data.trial{t}(peaklocations), 'r.');
xlim([(sp-1)*totallength/nsubpl (sp)*totallength/nsubpl]);
set(gca, 'xtick', [], 'ytick', []);
axis tight; box off;
xlim([(sp-1)*totallength/nsubpl (sp)*totallength/nsubpl]);
end
suplabel(sprintf('/P%02d-S%d_allEKG.mat', sj, session), 't');
waitforbuttonpress; % look at the performance of the peakdetection
end
% save into matrix
bpm = length(peaklocations) / range(data.time{t}) * 60;
if bpm < 50,
% in some cases, the EKG electrode was loose so there is no heart signal
% assuming we have no athletes in the sample...
reject.bpmTooLow(sj, t, session) = 0;
else
reject.bpmTooLow(sj, t, session) = 1;
end
% use Sven's visual rejection to decide if we use this sample
switch reject.Sven(sj, t, session)
case 1
keep = 1;
case 0
keep = 0;
end
if bpm < 50,
keep = 0;
end
results.heartrate(icnt) = bpm;
results.keep(icnt) = keep;
% ==================================================================
% HEART RATE VARIABILITY
% ==================================================================
interBeatInterval = diff(data.time{t}(peaklocations));
% now, how to convert this into 1 metric of variability?
end
end
end
results(isnan(results.subjnr), :) = [];
writetable(results, '~/Data/MEG-PL/Data/CSV/heartrate.csv');
end
% ==================================================================
% PLOT THE OUTCOME OF HEARTRATE OVER SESSIONS
% ==================================================================
%
% addpath('~/Documents/gramm');
% results = readtable('~/Data/MEG-PL/Data/CSV/heartrate.csv');
%
% for f = [0],
%
% % baseline correct by pre-drug heart rate
% if f == 1,
% for sj = unique(results.subjnr)',
% subjectdata = subjectspecifics(sj);
% for session = 1:length(subjectdata.session),
% results.heartrate(results.subjnr == sj & results.session == session) = ...
% results.heartrate(results.subjnr == sj & results.session == session) - ...
% nanmean(subjectdata.session(session).heartrate);
% end
% end
% end
%
% close all; clear g;
% % reshape into a timecourse from S1 to S2
% g(1,1) = gramm('x', results.block, 'y', results.heartrate,...
% 'color', results.drug, 'group', results.subjnr, 'subset', (results.block <= 10 & results.keep ==1));
% g(1,1).set_names('x', 'Block', 'y', 'BPM', 'column', 'Session');
% g(1,1).geom_line;
% g(1,1).facet_grid([], results.session, 'force_ticks', false);
% g(1,1).axe_property('xtick', 1:10, 'xlim', [0.5 10.1]);
%
% g(2,1) = gramm('x', results.block, 'y', results.heartrate,...
% 'color', results.drug, 'group', results.drug, 'subset', (results.block <= 10 & results.keep ==1));
% g(2,1).axe_property('xtick', 1:10, 'xlim', [0.5 10.1]);
% g(2,1).stat_summary('type', 'fitnormalci', ...
% 'geom', 'area', 'setylim', 'true');
% g(2,1).facet_grid([], results.session, 'force_ticks', false);
% g(2,1).set_names('x', 'Block', 'y', 'BPM', 'column', 'Session');
% g.draw;
%
% subjectdata = subjectspecifics('ga');
% set(gcf, 'PaperPositionMode', 'auto'); % avoid a warning
% print(gcf, '-dpdf', sprintf('%s/Figures/heartrate_bl%d.pdf', subjectdata.path, f));
%
% end