forked from anne-urai/2019_Urai_choice-history-ddm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
repetition_withintrial.m
203 lines (159 loc) · 7.79 KB
/
repetition_withintrial.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
function repetition_withintrial()
% Code to fit the history-dependent drift diffusion models as described in
% Urai AE, de Gee JW, Tsetsos K, Donner TH (2019) Choice history biases subsequent evidence accumulation. eLife, in press.
%
% MIT License
% Copyright (c) Anne Urai, 2019
% anne.urai@gmail.com
% ========================================== %
% conditional response functions from White & Poldrack
% run on simulated rather than real data
% ========================================== %
addpath(genpath('~/code/Tools'));
warning off; % close all;
global datasets datasetnames mypath colors
groups = {'alternators', 'repeaters', 'all'};
groups = {'all'};
% ========================================== %
% START
% ========================================== %
for g = 1:length(groups),
alldat.repeat = nan(6,4);
alldat.bias = nan(6,4);
alldat.rt = nan(6,4);
close all; subplot(4,4,1); hold on;
colors2 = cbrewer('qual', 'Set2', length(datasets));
markers = {'d', 's', '^', 'v', '>', '<'};
alldata = {};
for d = 1:length(datasets),
filename = dir(sprintf('%s/%s/*.csv', mypath, datasets{d}));
data = readtable(sprintf('%s/%s/%s', mypath, datasets{d}, filename.name));
if contains(datasetnames{d}{2}, 'FD'),
if d == 2,
data.rt = data.rt - 0.25 + 0.75;
elseif d == 3,
data.rt = data.rt - 0.25 + 0.5;
elseif d == 4,
data.rt = data.rt - 0.25 + 0.75;
end
end
% for those datasets with varying coherence, take only the difficult trials
% FOR THE TWO DATASETS WITH VARYING COHERENCE, REMOVE THE HIGH LEVELS
if any(ismember('coherence', data.Properties.VariableNames)),
if max(data.coherence) == 81,
data = data(data.coherence < 27, :);
elseif max(data.coherence) == 0.3,
data = data(data.coherence < 0.1, :);
else % do nothing
end
end
% divide RT into quantiles for each subject
discretizeRTs = @(x) {discretize(x, [0 0.4 0.8 1.6 5])};
discretizeRTs = @(x) {discretize(x, [0 quantile(x, [.2, .4, .6, .8, .95])])};
% discretize into bins of RT
rtbins = splitapply(discretizeRTs, data.rt, findgroups(data.subj_idx));
data.rtbins = cat(1, rtbins{:});
% ALSO COMPUTE PBIAS
data.repeat = (sign(data.prevresp) == sign(data.response - 0.1));
data.biased = data.repeat;
[gr2, sjs] = findgroups(data.subj_idx);
sjrep = splitapply(@nanmean, data.repeat, gr2);
alternators = sjs(sjrep < 0.5);
switch groups{g}
case 'alternators'
data(~ismember(data.subj_idx, alternators), :) = [];
case 'repeaters'
data(ismember(data.subj_idx, alternators), :) = [];
otherwise
% recode into biased and unbiased choices
altIdx = ismember(data.subj_idx, alternators);
data.biased(altIdx) = double(~(data.biased(altIdx))); % flip
end
if size(data, 1) == 0,
continue;
end
% SPLIT REPETITION BIAS BY RT QUANTILES
[gr, sjidx, rtbins] = findgroups(data.subj_idx, data.rtbins);
repetition = array2table([sjidx, rtbins], 'variablenames', {'subj_idx', 'rtbin'});
repetition.choice = splitapply(@nanmean, data.repeat, gr); % choice proportion
% make into a subjects by rtbin matrix
mat_tmp = unstack(repetition, 'choice', 'rtbin');
mat = mat_tmp{:, 2:end}; % remove the last one, only has some weird tail
bias = array2table([sjidx, rtbins], 'variablenames', {'subj_idx', 'rtbin'});
bias.choice = splitapply(@nanmean, data.biased, gr); % choice proportion
% make into a subjects by rtbin matrix
mat_tmp = unstack(bias, 'choice', 'rtbin');
mat2 = mat_tmp{:, 2:end}; % remove the last one, only has some weird tail
% also compute the mean RT for each subject and RT bin
rtAvg = array2table([sjidx, rtbins], 'variablenames', {'subj_idx', 'rtbin'});
rtAvg.rt = splitapply(@nanmean, data.rt, gr); % choice proportion
xRTs = unstack(rtAvg, 'rt', 'rtbin');
xRTs = xRTs{:, 2:end}; % remove the last one, only has some weird tail
assert(isequal(size(mat), size(xRTs)), 'mismatch');
% NOW PLOT
errorbar(nanmean(xRTs), nanmean(mat), nanstd(mat) ./ sqrt(size(mat, 1)), '-', 'marker', markers{d},...
'color', colors2(d, :), ...
'capsize', 0, 'markerfacecolor', 'w', 'markersize', 3, 'markeredgecolor', colors2(d, :));
% fixed effects across dataset
data.subj_idx = data.subj_idx + 1000*d;
alldata{end+1} = data(:, {'subj_idx', 'rt', 'repeat'});
end
end
hline(0.5);
data = cat(1, alldata{:});
discretizeRTs = @(x) {discretize(x, [0 quantile(x, [0.1, .2, .4, .6, .8, .95])])};
rtbins = splitapply(discretizeRTs, data.rt, findgroups(data.subj_idx));
data.rtbins = cat(1, rtbins{:});
% SPLIT REPETITION BIAS BY RT QUANTILES
[gr, sjidx, rtbins] = findgroups(data.subj_idx, data.rtbins);
repetition = array2table([sjidx, rtbins], 'variablenames', {'subj_idx', 'rtbin'});
repetition.choice = splitapply(@nanmean, data.repeat, gr); % choice proportion
% make into a subjects by rtbin matrix
mat_tmp = unstack(repetition, 'choice', 'rtbin');
mat = mat_tmp{:, 2:end}; % remove the last one, only has some weird tail
% also compute the mean RT for each subject and RT bin
rtAvg = array2table([sjidx, rtbins], 'variablenames', {'subj_idx', 'rtbin'});
rtAvg.rt = splitapply(@nanmean, data.rt, gr); % choice proportion
xRTs = unstack(rtAvg, 'rt', 'rtbin');
xRTs = xRTs{:, 2:end}; % remove the last one, only has some weird tail
assert(isequal(size(mat), size(xRTs)), 'mismatch');
% ADD THE MEAN ACROSS DATASETS
plot(nanmean(xRTs), nanmean(mat), '-', 'marker', '.', 'color', 'k');
% set(gca, 'xtick', [0.4 0.8 1.6], 'xticklabelrotation', 45);
% ylim([0.4 0.6]);
axis tight;
offsetAxes;
ylabel('P(repeat)');
%title(datasetnames{d});2
% if contains(datasetnames{d}{2}, 'RT'),
xlabel('RT (s)');
% elseif contains(datasetnames{d}{2}, 'FD'),
% xlabel('RT from stim offset (s)');
% end
set(gca, 'xcolor', 'k', 'ycolor', 'k');
tightfig;
print(gcf, '-dpdf', sprintf('~/Data/serialHDDM/bias_withintrial_summary_quantiles.pdf', d)); % 3b
disp('done repetition within trial')
return;
%%%%%%%%%%%%%%%%%
% AVERAGE ACROSS DATASETs
%%%%%%%%%%%%%%%%%
close all; subplot(4,4,d); hold on;
errorbar(nanmean(alldat.rt), nanmean(alldat.repeat), nanstd(alldat.repeat) ./ sqrt(size(alldat.repeat, 1)), '-bo', ...
'capsize', 0, 'markerfacecolor', 'b', 'markeredgecolor', 'w');
% errorbar(nanmean(alldat.rt), nanmean(alldat.bias), nanstd(alldat.bias) ./ sqrt(size(alldat.bias, 1)), '-ko', ...
% 'capsize', 0, 'markerfacecolor', 'k', 'markeredgecolor', 'w');
hline(0.5);
set(gca, 'xtick', nanmean(alldat.rt), 'xticklabelrotation', 45);
switch groups{g}
case 'all'
% ylim([0.48 0.56]);
end
offsetAxes;
ylabel('P(repeat)');
title(capitalize(groups{g}));
xlabel('RT (s)');
set(gca, 'xcolor', 'k', 'ycolor', 'k');
tightfig;
print(gcf, '-dpdf', sprintf('~/Data/serialHDDM/repetition_withintrial_%s.pdf', groups{g})); % 3b
end