forked from anne-urai/2019_Urai_choice-history-ddm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
posterior_predictive_checks.m
245 lines (200 loc) · 8.56 KB
/
posterior_predictive_checks.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
function posterior_predictive_checks
% Code to fit the history-dependent drift diffusion models as described in
% Urai AE, de Gee JW, Tsetsos K, Donner TH (2019) Choice history biases subsequent evidence accumulation. eLife, in press.
%
% MIT License
% Copyright (c) Anne Urai, 2019
% anne.urai@gmail.com
addpath(genpath('~/code/Tools'));
warning off; close all; clear;
global datasets datasetnames mypath
% ========================================== %
% MODULATION OF SERIAL CHOICE BIAS
% ========================================== %
% datasets = {'JW_PNAS', 'JW_yesno', 'Murphy', 'Anke_MEG_neutral', 'NatComm', 'MEG'};
plotWhich = 'stimcoding'; % {'error', 'biased', 'stimcoding'};
choiceCat = {{'left', 'right'}, {'down', 'up'}, {'weaker', 'stronger'}, {'weaker', 'stronger'}, {'no', 'yes'}, {'no','yes'}};
for d = 1:length(datasets),
close all;
if ~exist(sprintf('%s/summary/%s/%s_ppc_data.csv', mypath, datasets{d}, 'stimcoding_nohist'), 'file'),
fprintf('cannot find %s/stimcoding_nohist/ppc_data.csv \n', datasets{d});
continue;
else
disp(datasets{d});
end
% get traces for the model with pupil and rt modulation
ppc = readtable(sprintf('%s/summary/%s/%s_ppc_data.csv', mypath, datasets{d}, 'stimcoding_nohist'));
ppc.correct = (ppc.stimulus == ppc.response);
ppc.repeat = zeros(size(ppc.response));
ppc.repeat(ppc.response == (ppc.prevresp > 0)) = 1;
% for each observers, compute their bias
[gr, sjs] = findgroups(ppc.subj_idx);
sjrep = splitapply(@nanmean, ppc.repeat, gr);
sjrep = sjs(sjrep < 0.5);
% recode real data into biased vs unbiased
ppc.biased = ppc.repeat;
altIdx = ismember(ppc.subj_idx, sjrep);
ppc.biased(altIdx) = double(~(ppc.biased(altIdx))); % flip
switch plotWhich
case 'error'
ppc.biased = ppc.correct;
ppc.response = ppc.biased;
case 'stimcoding'
ppc.biased = (ppc.response > 0);
end
% unbiased RTs negative
ppc.rt(ppc.biased == 1) = abs(ppc.rt(ppc.biased == 1));
ppc.rt(ppc.biased == 0) = -abs(ppc.rt(ppc.biased == 0));
% SAME FOR THE SIMULATED DATA
ppc.correct_sampled = (ppc.stimulus == ppc.response_sampled);
% recode into repeat and alternate for the model
ppc.repeat_sampled = zeros(size(ppc.response_sampled));
ppc.repeat_sampled(ppc.response_sampled == (ppc.prevresp > 0)) = 1;
% recode into biased and unbiased choices
ppc.biased_sampled = ppc.repeat_sampled;
altIdx = ismember(ppc.subj_idx, sjrep);
ppc.biased_sampled(altIdx) = double(~(ppc.biased_sampled(altIdx))); % flip
switch plotWhich
case 'error'
ppc.biased_sampled = ppc.correct_sampled;
case 'stimcoding'
ppc.biased_sampled = (ppc.response_sampled > 0);
end
% define the sampled RT also by the sampled correctness!
ppc.modelcorrect = (ppc.response_sampled == ppc.stimulus);
ppc.rt_sampled(ppc.biased_sampled == 1) = abs(ppc.rt_sampled(ppc.biased_sampled == 1));
ppc.rt_sampled(ppc.biased_sampled == 0) = -abs(ppc.rt_sampled(ppc.biased_sampled == 0));
ppc = ppc(:, {'rt', 'rt_sampled', 'stimulus', 'response'}); % save some memory
% determine the colors
switch plotWhich
case 'error'
bestcolor = cbrewer('qual', 'Dark2', 5);
bestcolor = bestcolor([2 1], :);
fitcolor = cbrewer('qual', 'Set2', 5);
fitcolor = fitcolor([2 1], :);
case 'biased'
bestcolor = cbrewer('div', 'PiYG', 6);
bestcolor = bestcolor([1 end], :);
fitcolor = [0 0 0];
case 'stimcoding'
bestcolor = cbrewer('qual', 'Dark2', 5);
bestcolor = bestcolor([3 5], :);
fitcolor = cbrewer('qual', 'Set2', 5);
fitcolor = fitcolor([3 5], :);
end
switch plotWhich
case {'error', 'biased'};
ppc.stimulus = ones(size(ppc.stimulus));
end
ix = unique(ppc.stimulus);
rx = unique(ppc.response);
for i = 1:length(ix),
sph{i} = subplot(4,10,i);
hold on;
for r = 1:length(rx),
histogram_smooth(abs(ppc.rt(ppc.stimulus == ix(i) & ppc.response == rx(r))), ...
abs(ppc.rt_sampled(ppc.stimulus==ix(i) & ppc.response == rx(r))), ...
bestcolor(r, :), bestcolor(r, :), fitcolor(r, :));
end
axis tight; % axis square;
offsetAxes_y;
maxRT = ceil(max(abs(ppc.rt)));
if maxRT == 5, maxRT = 4; end
if maxRT < 3, maxRT = 3; end
% if d > 3,maxRT = 3; end
xlim([0 maxRT]); set(gca, 'xtick', [0 maxRT], 'xminortick', 'on');
% ylabel('Probability');
switch plotWhich
case 'stimcoding'
title({'Stimulus', capitalize(choiceCat{d}{i})}, 'color', bestcolor(i, :), 'fontweight', 'normal');
end
set(gca, 'yticklabel', []);
set(gca, 'xcolor', 'k', 'ycolor', 'k');
end
try
% move together
sph{2}.Position(1) = sph{2}.Position(1) - 0.01;
end
% xlabel('RT (s)');
[ss, h1] = suplabel('RT (s)', 'x');
ss.Position(2) = ss.Position(2) + 0.04;
h1.Color = 'k';
[ss, h1] = suplabel('Probability', 'y');
ss.Position(1) = ss.Position(1) + 0.06;
h1.Color = 'k';
try
set(sph{2}, 'ylim', get(sph{1}, 'ylim'));
end
% legend for choices!
switch plotWhich
case 'stimcoding'
ylims = get(gca, 'ylim');
text(maxRT*0.7, max(ylims)*0.7, 'Choice', 'fontsize', 6);
text(maxRT*0.7, max(ylims)*0.6, sprintf('"%s"', capitalize(choiceCat{d}{1})), 'color', bestcolor(1, :), 'fontsize', 6);
text(maxRT*0.7, max(ylims)*0.5, sprintf('"%s"', capitalize(choiceCat{d}{2})), 'color', bestcolor(2, :), 'fontsize', 6);
%set(gcf, 'color', 'none');
set(gca, 'xcolor', 'k', 'ycolor', 'k');
%[ss, h1] = suplabel(cat(2, datasetnames{d}{1}, ' ', datasetnames{d}{2}), 't');
%ss.Position(2) = ss.Position(2) + 0.04;
end
tightfig;
switch plotWhich
case 'error'
print(gcf, '-dpdf', sprintf('~/Data/serialHDDM/PPC_d%d.pdf', d));
case 'biased'
print(gcf, '-dpdf', sprintf('~/Data/serialHDDM/PPC_d%d_biased.pdf', d));
case 'stimcoding'
print(gcf, '-dpdf', sprintf('~/Data/serialHDDM/PPC_d%d_stimcode.pdf', d));
% export_fig(sprintf('~/Data/serialHDDM/PPC_d%d_stimcode.eps', d));
end
end
end
function h = histogram_smooth(x1, x2, color1, color2, fitcolor)
% % manually count so i can plot myself
% [n, edges] = histcounts(x1, -3:0.1:3, 'normalization', 'pdf');
%
% posidx = find(edges > 0); posidx(posidx > length(n)) = [];
% negidx = find(edges < 0);
%
% % plot as stairs??
% %bar(edges(posidx), n(posidx), 'edgecolor', 'none', 'facecolor', color1, 'barwidth', 1);
% %bar(edges(negidx), n(negidx), 'edgecolor', 'none', 'facecolor', color2, 'barwidth', 1);
%
% % [n, edges] =
% first the fit - make sure this is not normalized to 1!
%[f,xi] = ksdensity(x2);
%h = plot(xi, f, 'color', fitcolor, 'linewidth', 0.75);
% put the real number of trials on the y-axis
[n1, edges1] = histcounts(x1, -5:0.05:5);
[n2, edges2] = histcounts(x2, -5:0.05:5); % much smaller steps, smoother
% correctionRatio
%n2 = n2*10;
stairs(edges1(1:end-1), n1, 'color', fitcolor, 'linewidth', 1);
plot(edges2(1:end-1), n2, 'color', color1, 'linewidth', 0.75);
% histogram(x2, -3:0.01:3, 'displaystyle', 'stairs', ...
% 'edgecolor', fitcolor, 'linewidth', 0.75);
%
% % put the real number of trials on the y-axis
% histogram(x1, -3:0.1:3, 'displaystyle', 'stairs', ...
% 'edgecolor', color1, 'linewidth', 0.75);
% remove white box in the pdf
set(gca, 'color', 'none');
end
function offsetAxes_y()
if ~exist('ax', 'var'), ax = gca;
end
if ~exist('offset', 'var'), offset = 4;
end
% ax.YLim(1) = ax.YLim(1)-(ax.YTick(2)-ax.YTick(1))/offset;
ax.XLim(1) = ax.XLim(1)-(ax.XTick(2)-ax.XTick(1))/offset;
% this will keep the changes constant even when resizing axes
addlistener(ax, 'MarkedClean', @(obj,event)resetVertex(ax));
end
function resetVertex ( ax )
% repeat for Y (set 2nd row)
ax.YRuler.Axle.VertexData(2,1) = min(get(ax, 'Ytick'));
ax.YRuler.Axle.VertexData(2,2) = max(get(ax, 'Ytick'));
% X, Y and Z row of the start and end of the individual axle.
ax.XRuler.Axle.VertexData(1,1) = min(get(ax, 'Xtick'));
ax.XRuler.Axle.VertexData(1,2) = max(get(ax, 'Xtick'));
end