Skip to content

Latest commit

 

History

History
123 lines (86 loc) · 10.2 KB

README.md

File metadata and controls

123 lines (86 loc) · 10.2 KB

Tensor-WoW - A Neural-Network playing World of Warcraft

Tensor-WoW is the project behind the program RotBot, a fully pixel-based rotation bot for World of Warcraft using a 2D-convolutional neural network based on tensorflow.

Showcase M+ Video

This demo video shows several high-end M+ keys played using Tensor-WoW from every tank's (my) perspective

RotBot Showcase M+

Supported Classes as of WoW-Patch 10.1.5

Currently supported classes are mainly tanks, which I main :). The respective TF-Lite model for each class, which reads the screen and returns the name of the shown image (according to the icons in this directory), can be found here. The image names are matched to hotkeys as shown below.

Class Spec Availability
Death-Knight Blood
Demonhunter Vengence
Druid Guardian
Monk Brewmaster
Paladin Protection & Retribution
Warrior Protection, Arms & Fury

Functionality & Usage

The WoW Addon MaxDps-Minimal is used to show spells and cooldowns for the rotation of each class separately in a customized WeakAura as shown below:

The respective Weakaura string is:

!WA:2!fN1AWXXvvApEIDsMeW2YoowoetJHeBJLLTLFgR4kzgPrzMiPzeZmsY2Ybn9J7mDNPNUBD7EK1OTOQefcXKQ4LawGLLcIwETqiadqytGqmcyHWZt0Mn1sXB)ND)f)W1(dQI)SNZT75LKIDIJRnDvtpDFFEUNVZ35EUNo0yD4M5iDFSUpqhL7qRdTZF7lPiRwsJB70NTPn)(dho8iHpq3h5Ik2CngpwqLoBmMPXSZkZ1KYzBB6z4SGNT60mURHT12c9y3iFM0fk4Y8sCHp2n)sp)OJMvXFa0xW))4AfzoBk7uvK5mPbQyAknUUHhRMSLQUnFeBdlpL(INkx8mbDiRXSS1vZ)zFrluOqHZ4QkBYc3tfdTAPln9GrZMKp2aUCzvpuqCpAgxpzUxKygwgErukG)5QhzopUrXIOSU97Kh847BbnMsLcfYv1HXteFOrgy0HI5HVKrUcxUN5CDyMMj1CJCr3kkSPzwEzXwBmtTj7lA2CtMnx0m5IvbNefht5QmEJMncNHnlt2rIp0qzeLOKGjB6PNXsUmZnY8vSceHi8QbQS799)xtUg8Ar)vRFP34cCwrCnrsyMIC7koZlBzuwMwNhf6yaOZyw2wSfzYUSSECMvrp9RFjnu6PwmjTw4UmvBln35O2qJdS3yLLnSW(c7f666H9bDd7hFCllVKDAOnxgBpXqTKCfpeIs7i0WrQvGJleCgL9KdFjF4BaQiAcuY2xM4XtfZ0wwBGyUieU1mLRGMlrIHAu1Tchpsgvtzxx6jfpekT8epIYzbJIrUeAgW4wYMJ5Bz9ObgajTqns45DzMfeMkWnTaTYmcejdRc2CFvtK5f6QKy1B76740DO(SNxcUZexy6B5MFiufdrGBc2eQ)IaBocSLiWTSJ7e26l7SPkUSjftoVcUqvmz5rvYoC6GkxwX1MlGXHT1WkElWTFXML7x2oJ1NSRhSdCrXlY8Qr1hyePd3we4DezoQiYKjpibVn4wHTb3reCYp)gZGkt1sXq9Sn0zgrVG(Zd7aERxSXW0NnA4OdXZVurMfJBOMv3(CPTQ5k(ldtwRkKm)sCuiZsTpfIikJuPCzM5sngeQquuD6SpKdRzFolPr42f5mxxPDl61E8veTnf5NVrFVHo)KoBMAaBgKW1Cm1NNkuSkYhSWC2erjNMLZ3yNusp5AGt(OW9GyNgZv2JSuz6ZXdmZcTasHYim5D3(wHoxcFLCnrWPLMIoZOOU3ekIMZ0HJw4sgfTS5mA(XLVz5mzmmL1HEj7jFPCznqhobvhCxI7hJUFjp2mOGWgNl7qIOZw6BOOdpsU0XgkAFdgT)(tMl5yXvkBW52CDy38G2ppAGyPr9itSHINQFG5CIKK1tbzv2zJQPL2Y9SJZKlffxLUNDyMMH8zZ53x3Z67fCsYlOWjyMZzO5Ppb0teyDKVuK9fBqd1sW6tCVp819u)nYU9qHHddhjJQVt6qjUNhAJIRWWDJ6AndxvoZJnzdTzgzthD5WWgQzu4U0pCkzR3vIdc3Bei6wRHKfvwCY3KBE4D67mPDhch4k7IaPvO8UQmRTiix(mlOpbrISNrAdA)c7egaTuHeb0cSU7B5ec4(HbXEnualagMm8HuqAQJJGwjkvkXGm0yLfY5BYnMomEEy0Tf6C)34WaNQH1gCADWmembzubNfEGjG3nz(atc59nwa5vXYauavaPU7gyqbOiExNaGga08eajnISPCROu5WGXeqP2bOnul6SkkfM5WkhCGXGZeIWY7oIpwa21rauZsk4wqGLvYwwEjic0YuFf9XT6ibP9BafjZ)AdjWn0DyYCPeYwAs4wcgTHkiw8t)lb4I)qUmu5mxZqLLPXBhKg22QuaYGwSOM3uabBO2yog50o8iNzWK5woACvXhUsOXvMx0eniCavXiO8QgnwiBjkUQyYU6VsCJNy8wqHRw7URTqxDSAbbw1phJSJGPdTAmjFSRmHDtF0QLIvkx177qt1e7q7kegwwNEJGyuBydKrmaNXMTngXn8mF5))Hq0YwjCFf7GbQ0wmsBrDo1aNz6PtjFoZc9CTIkmZ6gA9cQqxBDLk(3mQeFFcLqNW2jLmP5j9iPM3j82jL(L1l(EeQNbc0c(AeFTtVRQEXz)n3FoNiendRII4wp7Oj3xgzdTgLsXoo5bR7xbVAOkvIkc3vOj3dPJ3qT0jYnqUC9RWgifbFLB4ApYRt13dDI)()tDpjVPB(cRznHwPNKxBAXRv89xaE35jvFVRq1)kAsA8)2ztIESgr1rQWYHd000X7Q7DEDOMT8mjsusv(y9ZYTsgEOWjUNFWoORBpCGkAnRQZ23yurvVkurvBUTvF2LvK9onZTffeAsm3tVNT1K3kusrpZqrNsoXPpsFrxD3Gp)BLUKQRKU32TJcyJFquj90qNkQvC9SllurbQMhX5bluXsC46DVNis4Lrbjp7IfnXJuGCftM0jpPKhVctYtNzjAbDHbJwHBjQqugZ0LT8klixVqmw6i4pcEqOjJQotTKsfhnmsFcNQ5lxIZ0QGhW3RIBG)ZAyGVpOq(MMHYAh(nm4mhdzx0qfEVxgFS1HPxTor8HP1pY6pYDD8Up2XAayZ5dyPSHdD91D)UHAfYnwv(9N(WXYvnWp7kJ67QW7WExWaDqL1Ucge)BznW6VUDSqWYgpFXmH(cReVSS9KO0AmjZA6U9pPD305ghKvvH2NA1qUDTREBan0)IBM2QYMsQv4CkHi0P)KoP0WYZ0VJB3Ix7T1PST2rZrlJ9QnUkv88Wd)TSH0DIwhNhOTziOhtCWh4Yp(7BFsdzOi5NKOGEjzBzwvY1gnd5Tie62ELyvrzO5y3DcBpuv12mh0Sl7SguUFtpX9X8iaA37PxHPorhLwtD36lPgCG8SNZWHL3zJnr0r9Pb7CX6nHYKMEmYgiVpZ98Dmx90(0XbHul6NsGO(KcKpfyEqBR5C8LzDeiJnSoOHvYMlzzykKZi1VcCH(i8kwISALXZOmtRHxukLi(tt)bIYAHhRgXvzb84hzM161yYLD7ssmmDjfKKK90cgqzkRljsu6ssv21lNb9oTS6TP2fbIGU6JcnmG979KlFaqifHaHrusRc27U(82BJostGKVZSExPtRvtOWwVRD1L0b6s6GRyyeE3wfouD(OB3Unign6BJspP0)qJcPlvDzRImTaXRR2QlycP)AVcN6j3bftckmu3v7nGwtyLILwBvimdoP)QTrfVNvQuQlVD3U817kBqlc5QuBlZ3QuBlI5QOqBzRMELAZMvC5NwwxNBD4ONQ)rYozFPtpu)Php1KJos)rZfVh4rrdyCNUBls9Tz0n0qZvkQG3FpYwvHhF(MSa)9sUujgZjkLrtVmKXUoT5YfDrfCPQ1T)15bzhFDWeNqSFZ53ItNu(JMuCZpJLtAf8aS35Bu3oVdlNnkEZvxgP8nt)9f9lTEAqJfD0CPD2SOqk7HukqvhNsMuSO4RxYFImMHPjk8HxYpDTN2pdZHwuu)dIRAJcvHBAb)CRroDILkDQ4qNC3kkuBwq0q16FGGWZhScS8C24aCJzLExvK1OeclLlNthTi51NPLeLDoBUgLPT5gp4HLAmoI8WNE0CdLmv8G1ElFzGfXAINzYyPZLl9WTnbNQTjGgj67g0zWc9uTTqN2WLsSR(5Vf4lGBP(f35DOcFj)Wo)YW)k8vGVk8Kpm81cbpfgPWxh(giM9nHA(Na4BbFB47ecEA47c)BWZapRZMsMkvdrktY7lro47hcE(8WZTp4heAvaA1gan8atbh9L5y0tuMQPanePpL8RY1BnKr(S2wSKAURDbnJcfmuRy6vLkpghpfJ)d2MIhM3zANMztNoLdzc2mEgUFL90meufxraekgLDS5EyioF05QVbJo0Z2lGrd6hMhxJvqgNz9EWDXQ1sydXi(4IuoILckHJlJ(zUQyusH7Pc3052098CCpX(3)5KlA3TH9(Lh5yz5hEC9u7VN2ctFd1ILiBct(XNwFQcXM12Um9rO6relv5WoBPUOr2M9B4kJWigx2G5Beb2L8dzqQEITfjUV(ldBRH0uwEX52MsXLvg10zoy3hO7dc39wHxuhXcISY0RFGpmorkqTJ6Sn)Cih8Xpe5mnoLlyxDmgU5OVHurmmZxh5WBVWhadIlyA)GWhYpWGqnomZhop8rqhuZRdF0gB3dFmAFE4JlohZ)i8jQV3m8jHpf8zX)PDKFe4Fg(Nwl8zC2CGJpXNKkWRxqAnixFpg8Pfb8t7KtU8Gph84WtupO5f0VQduf(x0HpFlo)Qt6SUQjDW3dEED456ejyiz7AbngUa8dXXOoTLOWcYj8ZfmLFuB0XGJj8te3)3f3xuC)N1YbhEbX9FQ4(pETWVa(Le3cnLG)CEkS))Ko8FcVC9dJiS(GFlsyMIoFW)LVv)Vh(dnmSxmWWwe4cza)7YlyfOT)gQn0GdmRJNLDjEpWFmG2c)AaGxe(n6WlPdlb)hixew)7D7K98VsV1J91X0V0P()c

To activate and de-activate the following macro is used (make you own Macro using /m) which triggers a change in color within the above WeakAura and, hence, orders RotBot to continue or stop pressing keys:

/stopcasting
/run toggle_single = not toggle_single

image

image

Configs and Settings

Configs are written in .json format within this directory and match spells and cooldowns (respectively the names of icons in ) to the correct keybinding, e.g. my Paladin's 'Blessed Hammer' spell is on Hotkey '3' and my 'Ancientkings' cooldown is on 'LSHIFT + F'.

{
    "Class" : "Paladin",
    "Spells" : ["Blessedhammer", "Judgement", "Avengersshield", "Hammerofwrath", "Consecration"],
    "Cooldowns" : ["Ardentdefender", "Sentinel", "Shieldofvengeance", "Acientkings", "Wordofglory", "Seraphim", "Divinetoll", "Eyeoftyr", "Bastionoflight", "Divineshield", "Layonhands", "peacebloom"],
    "Hotkeys Spells" : ["3","1","2","G","Q"],
    "Hotkeys CDs" : [["LALT", "3"], ["LSHIFT", "E"], ["4"], ["LSHIFT", "F"], ["E"],  ["LCONTROL", "3"], ["F"], ["LSHIFT", "3"], ["LALT", "5"], ["LALT", "4"], ["LCONTROL", "4"], []],
    "Hotkey Kick" : [["LSHIFT", "Q"]]
}

To read the correct positions from screen, the position of the Weak-Aura needs to be identified. Use RotBot's built in feature to identify the position of the mouse cursor when hovering over the WeakAura on-screen and enter the shown coordinates into the file settings.py. In the example below my spells have their anchor (middle-point) at the coordinates (54, 37) on my screen and 28 is half the icon-size used in the WeakAura.

"WA_Position_Spells": [
    54,
    37,
    28,
    28
]

Use the Get WA Pictures button to check, if the icons are visible with entered positions:

Screenreading and Keypresses

Spells and cooldowns are read directly from screen using OpenCV and a simplistic 2D-CNN, as shown below, trained for 10 epochs on 3000 augmented 56x56 images per class ability (189 in total). The augmentation as well as the training & tests are done within the file generate_models_CNN.py from which the resulting models are saved using tf-lite (for speed and minimal size). Please note that the augmentation is done b.c. an anchor needs to be defined for screen-reading which, frankly, is difficult to hit pixel-perfect. Hence, a 2D-CNN is a simpler and much more reliable method compared to alternatives like the structural similarity index measure, which I've used in previous versions.

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation="relu", input_shape=(56, 56, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation="relu"))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation="relu"))

model.add(layers.Flatten())
model.add(layers.Dense(64, activation="relu"))
model.add(layers.Dense(len(files)))

model.summary()
model.compile(
    optimizer="adam",
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=["accuracy"],
)
history = model.fit(
    train_images, train_labels, epochs=10, validation_data=(test_images, test_labels)
)
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

Keypresses, following the read spells and cooldowns, are done using directkeys.py by directly sending the hexcodes for windll.user32.SendInput. The configs to match the keybinds accordingly are defined as jsons in this directory