-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathargs.py
106 lines (105 loc) · 2.77 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--primary_path',
type=str,
default='crosstask_release/tasks_primary.txt',
help='list of primary tasks')
parser.add_argument(
'--related_path',
type=str,
default='crosstask_release/tasks_related.txt',
help='list of related tasks')
parser.add_argument(
'--annotation_path',
type=str,
default='crosstask_release/annotations',
help='path to annotations')
parser.add_argument(
'--video_csv_path',
type=str,
default='crosstask_release/videos.csv',
help='path to video csv')
parser.add_argument(
'--val_csv_path',
type=str,
default='crosstask_release/videos_val.csv',
help='path to validation csv')
parser.add_argument(
'--features_path',
type=str,
default='crosstask_features',
help='path to features')
parser.add_argument(
'--constraints_path',
type=str,
default='crosstask_constraints',
help='path to constraints')
parser.add_argument(
'--n_train',
type=int,
default=30,
help='videos per task for training')
parser.add_argument(
'--lr',
type=float,
default=1e-5,
help='learning rate')
parser.add_argument(
'-q',
type=float,
default=0.7,
help='regularization parameter')
parser.add_argument(
'--epochs',
type=int,
default=30,
help='number of training epochs')
parser.add_argument(
'--pretrain_epochs',
type=int,
default=30,
help='number of pre-training epochs')
parser.add_argument(
'--batch_size',
type=int,
default=1,
)
parser.add_argument(
'--num_workers',
type=int,
default=8,
help='number of dataloader workers'
)
parser.add_argument(
'--use_related',
type=int,
default=1,
help='1 for using related tasks during training, 0 for using primary tasks only'
)
parser.add_argument(
'--use_gpu',
type=int,
default=0,
)
parser.add_argument(
'-d',
type=int,
default=3200,
help='dimension of feature vector',
)
parser.add_argument(
'--lambd',
type=float,
default=1e4,
help='penalty coefficient for temporal cosntraints. Put 0 to use no temporal constraints during training',
)
parser.add_argument(
'--share',
type=str,
default='words',
help='Level of sharing between tasks',
)
args = parser.parse_args()
return args