
DBMS Project Report

1. Problem Statement:

Railway Enquiry System

Design a database solution for the railway network. The enquiry system should have the

following information:

 Station names

 Train IDs with names

 Weekly Schedules of the trains 

 Ticket Availability

 Cost of trip

The train schedules should have information on the stations from where the train starts and by

when it reaches the destination. It should also include information about all stations it passes

through during its journey.

2. ER diagram.

3. Database schema as required for building the application.

1. STATION(Station_id,Station_name,State_located,Trans_per_week,Platform_nos)

2. TRAIN(Train_id,Train_name,Train_type,Run_days,Capacity,Cost_per_seat)

3. TRAIN_ROUTE(Train_id,Starting_station,Ending_station,Travel_time,Distance_in_kms

,Stops)

4. TRAIN_JOURNEY(Train_id, Station_id, Arrival,Departure,Halt_time,Running_day)

5. TICKET(Ticket_id,User_password,Train_id, Station_id,

Arrival,Departure,Halt_time,Running_days)

6. PASSENGER_DETAILS(Ticket_id,Passenger_name,Age,Sex,Date_of_birth)

4.Database normalization and justification.

A table is required to store the list of all the teams and their managers with their respective

details.

List_of_teams (TeamName, Stadium, ManagerName, ManagerAge, ManagerStyle)

The above table is clearly satisfying 1NF since all the column name are unique and all the

columns would contain atomic values and all the data present in a column are of the same type.

But a deletion anomaly occurs when we try to delete all the records from the table.

When we delete all the team details (or records) from the table, we accidentally delete all the

manager information as well. So, to avoid this kind of anomaly we split the table into two

different tables i.e.

ManagerDetails (M_id, ManagerName, Age, Style)

List_of_Teams (TeamName, M_id, Stadium)

Here in the above tables, M_id is a primary key in the ManagerDetails table and M_id is a

foreign key in the List_of_Teams table. When the table is split into two tables and now when

we delete all the team details (or records) from the List_of_Teams table, the manager details

remain unaltered. So, we can say that our tables now satisfy the 2NF form since it is devoid of

deletion anomaly that we previously encountered and there are no partial dependencies.

Our Tables (List_of_teams & ManagerDetails) are also satisfying the 3NF form since there is no

transitive dependencies.

Another table is required to store the details of all the player of each team.

List_of_Players (Player_id {TeamName, Jersey No}, Name, Pos, DOB, AGE)

Here TeamName and Jersey No of the player together forms a composite key which and which

uniquely identifies all the records of our List_of_Players table.

The above table (List_of_Players) is clearly satisfies 1NF since all the column name are unique

and all the columns would contain atomic values and all the data present in a column are of the

same type.

Here in this table TeamName is a foreign key which refers to the TeamName in the

List_of_Teams table.

The List_of_Players table is also satisfying the 2NF and 3NF since there are no partial and

transitive dependencies. And the redundant data is minimized and it is devoid of all the

anomalies.

A table is required to store all the matches that took place between different teams and all the

players who played in a particular match.

We could create a single table that contains all the details of the players who played in different

matches but doing so would lead to a lot of redundant data in our table and can cause

insertion, deletion and updation anomalies.

So, we split the table we intended to create into 3 different tables namely

Fixtures (F_id, Date, time, HomeTeam, AwayTeam, score)

Homeplayers (F_id, HomeTeam, Jersey_No, Playing11)

Awayplayers (F_id, Awayteam, Jersey_No, Playing11)

The fixtures table would contain all the previous match information like the date, time, score

etc. whereas the Homeplayers and the Awayplayers table would contain whether a particular

player was in the match as one of the playing 11 players or if he was in the substitutes or

reserves.

The F_id is the primary key in the fixtures table and is a foreign key in the tables Homeplayers

and Awayplayers.

The fixtures table satisfies the 1NF, 2NF and the 3NF since all the column names are unique and

the values are atomic and it doesn’t have any partial or transitive dependencies.

In the Homeplayers table, we can identify each record of the table uniquely by considering the

F_id, HomeTeam and Jersey_no together as a primary key. So therefore (F_id, HomeTeam,

Jersey_no) together forms the composite key which can uniquely identify each record of the

table.

The Homeplayers table satisfies the 1NF form since all the column names are unique and the

values are atomic. It also satisfies the 2NF form since it doesn’t have any partial dependencies

because of the functional dependency

{F_id, HomeTeam, Jersey_no} → Playing11 i.e. all the 3 columns are required to identify if a

player was in the Playing11 or not.

The Homeplayers tables also satisfies the 3NF form since there aren’t any transitive

dependencies because no non-prime attribute depends on any other non-prime attribute.

Similarly, we can say the same for the Awayplayers table too.

Therefore, all the tables in the databased are normalized to remove all the anomalies and to

reduce redundant data.

5. Coding & Implementation:

import sqlite3

from tkinter import *

from tkinter import ttk

import tkinter as tk

from tkinter import messagebox as msg

from PIL import Image, ImageTk

#To set connection with sqlite3 Railway.db

def connection():

 con=sqlite3.connect('Railway.db')

 cursor=con.cursor()

 return con,cursor

#Login function gets triggred on pressing LOGIN button

def login():

 if not e_u.get().isnumeric():

 e_u.set("")

 e_p.set("")

 msg.showerror('ERROR','Incorrect Userid/Password!')

 else:

 id=int(e_u.get())

 pwd=e_p.get()

 e_u.set("")

 e_p.set("")

 con,cur=connection()

 cur.execute("select * from ticket where ticket_id={} and

user_password='{}'".format(id,pwd))

 result=cur.fetchall()

 if result!=[]:

 for i in result:

 ticket_id=i[0]

 if id!='' and pwd!='':

 msg.showinfo("",'Login sucessful')

 login_screen.destroy()

 personal_details(ticket_id)

 else:

 msg.showerror('ERROR','Incorrect Userid/Password!')

 con.close()

#window to display Personal details of the passenger based on the Ticket ID

def personal_details(ticket_id):

 info = Tk()

 info.geometry('1170x300')

 info.title('Details')

 info.iconbitmap('Logo.ico')

 title_label = Label(info,text="Ticket Infomation",font=("Calibri bold", 18))

 title_label.pack(pady=10)

 table_frame=Frame(info).pack(padx=50,pady=20)

 tree=ttk.Treeview(table_frame,height=3)

 tree["columns"]=("1","2","3","4","5","6","7","8","9","10")

 tree.column("#0", width=120, minwidth=110, stretch=NO,anchor=CENTER)

 tree.column("1", width=50, minwidth=50, stretch=NO,anchor=CENTER)

 tree.column("2", width=50, minwidth=50,stretch=NO,anchor=CENTER)

 tree.column("3", width=130, minwidth=100, stretch=NO,anchor=CENTER)

 tree.column("4", width=210, minwidth=170, stretch=NO,anchor=CENTER)

 tree.column("5", width=160, minwidth=100, stretch=NO,anchor=CENTER)

 tree.column("6", width=150, minwidth=100, stretch=NO,anchor=CENTER)

 tree.column("7", width=100, minwidth=80, stretch=NO,anchor=CENTER)

 tree.column("8", width=100, minwidth=80, stretch=NO,anchor=CENTER)

 tree.column("9", width=100, minwidth=80, stretch=NO,anchor=CENTER)

 tree.heading("#0",text="PASSENGER_NAME")

 tree.heading("1", text="AGE")

 tree.heading("2", text="SEX")

 tree.heading("3", text="DATE_OF_BIRTH")

 tree.heading("4", text="TRAIN_NAME")

 tree.heading("5", text="ORIGIN")

 tree.heading("6", text="DESTINATION")

 tree.heading("7", text="TRAVEL_DATE")

 tree.heading("8", text="DEPARTURE_TIME")

 tree.heading("9", text="FARE_PER_HEAD")

 tree.pack(fill=X)

 btnFrame = Frame(info)

 schedule_button=ttk.Button(btnFrame,text=" TICKET SCHEDULE

 ",takefocus=False, command=lambda: schedule(info))

 schedule_button.pack(pady=30,side=BOTTOM)

 btnFrame.pack(fill=X)

 # inserting values to tree

 con, cur = connection()

 lst = cur.execute("select

PASSENGER_NAME,AGE,SEX,DATE_OF_BIRTH,TRAIN_NAME,STATION_NAME,DESTINATION,TRAVEL_D

ATE,TRAVEL_TIME,TOTAL_FARE,HEAD_COUNT from PASSENGER_DETAILS natural join TICKET

where TICKET_ID={}".format(ticket_id))

 for tup in lst:

 d0,d1,d2,d3,d4,d5,d6,d7,d8,d9,d10=tup

 tree.insert("", "end", text=str(d0), values=(str(d1), str(d2), str(d3),

str(d4), str(d5),str(d6),str(d7),str(d8),str(d9/d10)))

 tk.Label(info,text='Cost of Trip:

 {}'.format(d9),relief=RIDGE).place(width=150,height=30,x=1000,y=200)

 con.close()

#schedule window to display the weekly schedule of the Trains

def schedule(win):

 win.destroy()

 schedule = Tk()

 schedule.geometry('870x400')

 schedule.title('Ticket Schedule')

 schedule.iconbitmap('Logo.ico')

 title_label = Label(schedule,text='Weekly Schedule',font=("Calibri bold",

17))

 title_label.pack(pady=10)

 table_frame = Frame(schedule)

 table_frame.pack()

 sb = ttk.Scrollbar(table_frame)

 tree=ttk.Treeview(table_frame, height=9,yscrollcommand = sb.set)

 tree["columns"]=("1","2","3","4","5","6")

 tree.column("1", width=90, minwidth=100, stretch=NO,anchor=CENTER)

 tree.column("#0", width=190, minwidth=120, stretch=NO,anchor=CENTER)

 tree.column("2", width=140, minwidth=100,stretch=NO,anchor=CENTER)

 tree.column("3", width=130, minwidth=100,stretch=NO,anchor=CENTER)

 tree.column("4", width=100, minwidth=100,stretch=NO,anchor=CENTER)

 tree.column("5", width=100, minwidth=100,stretch=NO,anchor=CENTER)

 tree.column("6", width=100, minwidth=100,stretch=NO,anchor=CENTER)

 tree.heading("#0",text="TRAIN_NAME")

 tree.heading("1", text="TRAIN_ID")

 tree.heading("2", text="STARTING_STATION")

 tree.heading("3", text="ENDING_STATION")

 tree.heading("4", text="TRAVEL_TIME")

 tree.heading("5", text="DISTANCE_IN_KMS")

 tree.heading("6", text="STOPS_NOS")

 sb.config(command = tree.yview)

 sb.pack(side = RIGHT, fill=Y)

 tree.pack(fill=X)

 btnFrame = Frame(schedule)

 ttk.Button(btnFrame,text="STATIONS PASSING",takefocus=False, command=lambda:

station_details(tree)).pack(pady=8)#height=50,width=120,x=100,y=320

 ttk.Button(btnFrame,text="TRAIN DESCRIPTION",takefocus=False,command=lambda:

train_desc(tree)).pack(pady=8)#side=BOTTOM

 ttk.Button(btnFrame,text="TICKET

AVAILABILITY",takefocus=False,command=lambda:

ticket_availability(tree)).pack(pady=8)#padx=20,pady=10,side=RIGHT

 btnFrame.pack(fill=X)

 # inserting values to tree

 con, cur = connection()

 lst = cur.execute("select

TRAIN_NAME,TRAIN_ID,STARTING_STATION,ENDING_STATION,TRAVEL_TIME,DISTANCE_IN_KMS,S

TOPS from TRAIN_ROUTE")

 for tup in lst:

 d0,d1,d2,d3,d4,d5,d6=tup

 tree.insert("", "end", text=d0, values=(str(d1), str(d2), str(d3),

str(d4), str(d5),str(d6)))

 con.commit()

 con.close()

#Station_details to display the stations a selected train passes through based on

it ID

def station_details(tree):

 train_id=tree.item(tree.selection())['values'][0]

 stations=Toplevel()

 stations.geometry('700x300')

 stations.iconbitmap('Logo.ico')

 stations.title('Stations')

 stations.config(bg='#4DC1A2')

 con,curr = connection()

 curr.execute('SELECT TRAIN_NAME FROM TRAIN WHERE

TRAIN_ID={}'.format(train_id))

 value=curr.fetchall()

 title_label = Label(stations,text='{} PASSES THROUGH THE

STATIONS'.format(value[0][0]),font=("Calibri bold", 17),bg='#4DC1A2')

 title_label.pack(pady=10)

 curr.close()

 table_frame = Frame(stations)

 table_frame.pack()

 sb = ttk.Scrollbar(table_frame)

 tree=ttk.Treeview(table_frame, height=7,yscrollcommand = sb.set)

 tree["columns"]=("1","2","3","4")

 tree.column("#0", width=190, minwidth=120, stretch=NO,anchor=CENTER)

 tree.column("1", width=90, minwidth=100, stretch=NO,anchor=CENTER)

 tree.column("2", width=140, minwidth=100,stretch=NO,anchor=CENTER)

 tree.column("3", width=130, minwidth=100,stretch=NO,anchor=CENTER)

 tree.column("4", width=100, minwidth=100,stretch=NO,anchor=CENTER)

 tree.heading("#0",text="STATION_NAME")

 tree.heading("1", text="ARRIVAL")

 tree.heading("2", text="DEPARTURE")

 tree.heading("3", text="HALT_TIME")

 tree.heading("4", text="RUNNING_DAY")

 sb.config(command = tree.yview)

 sb.pack(side = RIGHT, fill=Y)

 tree.pack(fill=X)

 con, cur = connection()

 lst = cur.execute("select

STATION_NAME,ARRIVAL,DEPARTURE,HALT_TIME,RUNNING_DAY from TRAIN_JOURNEY where

TRAIN_ID={} order by RUNNING_DAY,departure".format(train_id))

 for tup in lst:

 d0,d1,d2,d3,d4=tup

 tree.insert("", "end", text=d0, values=(str(d1), str(d2), str(d3),

str(d4)))

 con.commit()

 con.close()

#Train_desc to display the description of a selected train based on its ID

def train_desc(tree):

 train_id=tree.item(tree.selection())['values'][0]

 description=Toplevel()

 description.geometry('750x150')

 description.iconbitmap('Logo.ico')

 description.title('Stations')

 description.config(bg='#9F94BF')

 con,curr = connection()

 curr.execute('SELECT TRAIN_NAME FROM TRAIN WHERE

TRAIN_ID={}'.format(train_id))

 value=curr.fetchall()

 title_label = Label(description,text='DESCRIPTION OF

{}'.format(value[0][0]),font=("Calibri bold", 17),bg='#9F94BF')

 title_label.pack(pady=10)

 curr.close()

 table_frame = Frame(description)

 table_frame.pack()

 tree=ttk.Treeview(table_frame, height=1)

 tree["columns"]=("1","2","3","4")

 tree.column("#0", width=190, minwidth=140, stretch=NO,anchor=CENTER)

 tree.column("1", width=150, minwidth=100, stretch=NO,anchor=CENTER)

 tree.column("2", width=140, minwidth=100,stretch=NO,anchor=CENTER)

 tree.column("3", width=130, minwidth=100,stretch=NO,anchor=CENTER)

 tree.column("4", width=100, minwidth=100,stretch=NO,anchor=CENTER)

 tree.heading("#0",text="TRAIN_NAME")

 tree.heading("1", text="TRAIN_TYPE")

 tree.heading("2", text="RUN_DAYS")

 tree.heading("3", text="TOTAL_CAPACITY")

 tree.heading("4", text="COST_PER_SEAT")

 tree.pack(fill=X)

 con, cur = connection()

 lst = cur.execute("select

TRAIN_NAME,TRAIN_TYPE,RUN_DAYS,CAPACITY,COST_PER_SEAT from train where

TRAIN_ID={}".format(train_id))

 for tup in lst:

 d0,d1,d2,d3,d4=tup

 tree.insert("", "end", text=d0, values=(str(d1), str(d2), str(d3),

str(d4)))

 con.commit()

 con.close()

#ticket_availability to display the availability of tickets in a selected train

def ticket_availability(tree):

 train_id=tree.item(tree.selection())['values'][0]

 con,cur=connection()

 cur.execute('select capacity-(select sum(head_count) as total_passengers from

ticket group by train_id having train_id={}) from train where

train_id={}'.format(train_id,train_id))

 res=cur.fetchall()

 msg.showinfo('Ticket availability','Available tickets\n

 {}'.format(res[0][0]))

#LOGIN SCREEN

#__main__:

login_screen=Tk()

login_screen.geometry('800x660')

login_screen.title('Railways')

login_screen.iconbitmap('Logo.ico')

login_screen.configure(bg='grey')

s = ttk.Style()

s.configure('TButton', font=('Calibri', 24))

s.configure("Treeview.Heading", font=('Calibri', 14))

s.configure('Treeview', rowheight=27, font=('Calibri', 12))

img= (Image.open("IRCTC.png"))

resized_image= img.resize((300,200), Image.ANTIALIAS)

new_image= ImageTk.PhotoImage(resized_image)

canvas= Canvas(login_screen, width= 500, height= 200)

canvas.create_image(0,0, anchor=NW, image=new_image)

canvas.pack(padx = 250, pady= 50)

f1=Frame(login_screen,bd=5,relief=RAISED) #must be flat, groove, raised, ridge,

solid, or sunken

f1.pack()

f2=Frame(login_screen,bd=1,relief=SUNKEN)

f2.pack(fill=X,padx = 32, pady = 20)

names_frame = Frame(f2)

names_frame.pack(pady = 10)

Label(names_frame,text="Made by: ",font=("Consolas",12,'italic')).pack(side=LEFT)

Label(names_frame,text="H Abdurrahman

Lalsudhesh",font=("Consolas",11,'italic')).pack(side=LEFT, padx= 40)

Label(names_frame,text="Aruneeswaran

K",font=("Consolas",11,'italic')).pack(side=LEFT, padx = 40)

Label(names_frame,text="Jiitesh S",font=("Consolas",11,'italic')).pack(side=LEFT,

padx = 40)

label_userid=tk.Label(login_screen,text='User

ID:',justify=LEFT).place(width=70,height=25,x=294,y=350)

label_password=tk.Label(login_screen,text='Password:').place(width=70,height=25,x

=300,y=380)

e_u=tk.StringVar()

e_p=tk.StringVar()

entry_userid=tk.Entry(login_screen,textvariable=e_u).place(width=100,height=25,x=

370,y=350)

entry_password=tk.Entry(login_screen,show='*',textvariable=e_p).place(width=100,h

eight=25,x=370,y=380)

border2 = Frame(f1)

login_button=ttk.Button(border2,text="login",style="W.TButton",width=10,takefocus

=False, command=login)

login_button.pack(pady=20,side=BOTTOM)

border2.pack(padx=70,pady=90)

login_screen.mainloop()

6. Results (Screenshots).

Fig 1. Login screen window.

Fig 2. Login screen with error.

Fig 3. Successfully logged in screen.

Fig 4. Ticket information window.

Fig 5. Ticket schedule window

Fig 6. Station_details screen to display the stations a selected train passes through.

Fig 7. Train_desc screen to display the description of a selected train.

Fig 8. Ticket_availability screen to display the availability of tickets of a selected train.

Appendix - Report on Python GUI tkinter.

Tkinter is the standard GUI library for Python. It is the Python interface to the Tk GUI toolkit

shipped with Python.

To create a window in tkinter we user a Tk() object, which allows us to create a standalone

window.

import Tkinter

top = Tkinter.Tk()

Code to add widgets will go here...

top.mainloop()

The above code creates a blank window when executed.

Tkinter Widgets

Tkinter provides various controls, such as buttons, labels and text boxes used in a GUI
application. These controls are commonly called widgets.

Brief description of all the Tkinter widgets used in this project.

1. Label:

Label widget implements a display box where you can place text or images. The text displayed
by this widget can be updated at any time.

Syntax:

l = Label (master, option, ...)

Parameters:

 master − This represents the parent window.

 options – text, font, bg, image, justify, fg, bitmap etc.

2. Button:

The Button widget is used to add buttons in a Python application. These buttons can display
text or images that convey the purpose of the buttons. You can attach a function or a method
to a button which is called automatically when you click the button.

Syntax:

b = Button (master, option=value, ...)

Parameters:

 master − This represents the parent window.

 options – text, font, bg, fg, image, height, width, command etc.

3. Frame:

The Frame widget is very important for the process of grouping and organizing other widgets in
a somehow friendly way. It works like a container, which is responsible for arranging the
position of other widgets.

Syntax:

l = Label (master, option, ...)

Parameters:

 master − This represents the parent window.

 options – bg, height, cursor, bd, width, relief etc.

4. Canvas:

The Canvas is a rectangular area intended for drawing pictures or other complex layouts.
Canvas can be used to place graphics, text, widgets or even frames.

Syntax:

c = Canvas (master, option=value, ...)

Parameters:

 master − This represents the parent window.

 options – bd, bg, height, cursor, width, yscrollcommand, xscrollcommand etc.

5. Scrollbar:

This widget provides a slide controller that is used to implement vertical scrolled widgets, such
as Listbox, Text and Canvas.

Syntax:

s = Scrollbar (master, option, ...)

Parameters:

 master − This represents the parent window.

 options – bg, bd, command, orient, width, repeatinterval, takefocus etc.

6. Toplevel:

Toplevel widgets work as windows that are directly managed by the window manager. They do
not necessarily have a parent widget on top of them.

Syntax:

t = Toplevel (master, option, ...)

Parameters:

 master − This represents the parent window.

 options – bd, bg, cursor, height, width, relief, font, fg etc.

7. Treeview:

A treeview widget displays a hierarchy of items and allows users to browse through it. One or
more attributes of each item can be displayed as columns to the right of the tree. It can be
used to build user interfaces similar to the tree display you'd find in file managers.

Syntax:

tree = ttk.Treeview(master, option, ...)

Parameters:

 master − This represents the parent window.

 options – height, displaycolumns, padding, columns, selectmode etc.

Source: Tkinter python

https://docs.python.org/3/library/tkinter.ttk.html#:~:text=the%20new%20widgets.-,Ttk%20Widgets,%2C%20Separator%20%2C%20Sizegrip%20and%20Treeview%20.

