-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathcheck_equivalency.py
116 lines (88 loc) · 3.8 KB
/
check_equivalency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
from repoptimizer.repoptimizer_utils import RepOptimizerHandler
from repoptimizer.repoptimizer_sgd import RepOptimizerSGD
from repoptimizer.repoptimizer_adamw import RepOptimizerAdamW
num_train_iters = 50
lr = 0.1
momentum = 0.9
weight_decay = 0.1
nest = True
test_scales = (0.233, 0.555)
in_channels = 4
out_channels = 4
in_h, in_w = 8, 8
batch_size = 4
train_data = []
for _ in range(num_train_iters):
train_data.append(torch.randn(batch_size, in_channels, in_h, in_w))
class TestModel(nn.Module):
def __init__(self, scales):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, 1, padding=1, bias=False)
self.conv2 = nn.Conv2d(in_channels, out_channels, 1, 1, padding=0, bias=False)
self.scales = scales
def forward(self, x):
return self.conv1(x) * self.scales[0] + self.conv2(x) * self.scales[1]
def get_equivalent_kernel(model):
return model.conv1.weight * test_scales[0] + F.pad(model.conv2.weight * test_scales[1], [1,1,1,1])
class TestSGDHandler(RepOptimizerHandler):
# "model" is simply a 3x3 conv
def __init__(self, model, scales):
self.model = model
self.scales = scales
def generate_grad_mults(self):
mask = torch.ones_like(self.model.weight) * self.scales[0] ** 2
mask[:, :, 1, 1] += self.scales[1] ** 2
return {self.model.weight: mask}
class TestAdamWHandler(RepOptimizerHandler):
# "model" is simply a 3x3 conv
def __init__(self, model, scales):
self.model = model
self.scales = scales
def generate_grad_mults(self):
mask = torch.ones_like(self.model.weight) * self.scales[0]
mask[:, :, 1, 1] += self.scales[1]
return {self.model.weight: mask}
def check_equivalency(update_rule):
assert update_rule in ['sgd', 'adamw']
print('################################# testing optimizer: ', update_rule)
model = TestModel(test_scales)
model.train()
# to check the equivalency, we need to record the initial value of the equivalent kernel
init_weights = get_equivalent_kernel(model)
if update_rule == 'sgd':
optimizer = torch.optim.SGD(params=model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay)
else:
optimizer = torch.optim.AdamW(params=model.parameters(), eps=1e-8, betas=(0.9, 0.999), lr=lr, weight_decay=weight_decay)
for i in range(num_train_iters):
x = train_data[i]
y = model(x)
optimizer.zero_grad()
loss = y.var() # just an arbitrary loss function.
loss.backward()
optimizer.step()
print('============== finished training the original model')
eq_model = nn.Conv2d(in_channels, out_channels, 3, 1, padding=1, bias=False)
eq_model.weight.data = init_weights
if update_rule == 'sgd':
handler = TestSGDHandler(eq_model, scales=test_scales)
eq_optimizer = RepOptimizerSGD(handler.generate_grad_mults(), eq_model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay)
else:
handler = TestAdamWHandler(eq_model, scales=test_scales)
eq_optimizer = RepOptimizerAdamW(handler.generate_grad_mults(), eq_model.parameters(), eps=1e-8, betas=(0.9, 0.999), lr=lr,
weight_decay=weight_decay)
for i in range(num_train_iters):
x = train_data[i]
y = eq_model(x)
eq_optimizer.zero_grad()
loss = y.var()
loss.backward()
eq_optimizer.step()
print('============== finished training the equivalent model')
print('============== the relative difference is ')
print((eq_model.weight.data - get_equivalent_kernel(model)).abs().sum() / eq_model.weight.abs().sum())
check_equivalency('sgd')
check_equivalency('adamw')