-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathconvnet_utils.py
90 lines (77 loc) · 3.49 KB
/
convnet_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
import torch.nn as nn
from diversebranchblock import DiverseBranchBlock
from acb import ACBlock
from dbb_transforms import transI_fusebn
CONV_BN_IMPL = 'base'
DEPLOY_FLAG = False
class ConvBN(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size,
stride, padding, dilation, groups, deploy=False, nonlinear=None):
super().__init__()
if nonlinear is None:
self.nonlinear = nn.Identity()
else:
self.nonlinear = nonlinear
if deploy:
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
else:
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)
self.bn = nn.BatchNorm2d(num_features=out_channels)
def forward(self, x):
if hasattr(self, 'bn'):
return self.nonlinear(self.bn(self.conv(x)))
else:
return self.nonlinear(self.conv(x))
def switch_to_deploy(self):
kernel, bias = transI_fusebn(self.conv.weight, self.bn)
conv = nn.Conv2d(in_channels=self.conv.in_channels, out_channels=self.conv.out_channels, kernel_size=self.conv.kernel_size,
stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups, bias=True)
conv.weight.data = kernel
conv.bias.data = bias
for para in self.parameters():
para.detach_()
self.__delattr__('conv')
self.__delattr__('bn')
self.conv = conv
def conv_bn(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1):
if CONV_BN_IMPL == 'base' or kernel_size == 1 or kernel_size >= 7:
blk_type = ConvBN
elif CONV_BN_IMPL == 'ACB':
blk_type = ACBlock
else:
blk_type = DiverseBranchBlock
return blk_type(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, deploy=DEPLOY_FLAG)
def conv_bn_relu(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1):
if CONV_BN_IMPL == 'base' or kernel_size == 1 or kernel_size >= 7:
blk_type = ConvBN
elif CONV_BN_IMPL == 'ACB':
blk_type = ACBlock
else:
blk_type = DiverseBranchBlock
return blk_type(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, deploy=DEPLOY_FLAG, nonlinear=nn.ReLU())
def switch_conv_bn_impl(block_type):
assert block_type in ['base', 'DBB', 'ACB']
global CONV_BN_IMPL
CONV_BN_IMPL = block_type
def switch_deploy_flag(deploy):
global DEPLOY_FLAG
DEPLOY_FLAG = deploy
print('deploy flag: ', DEPLOY_FLAG)
def build_model(arch):
if arch == 'ResNet-18':
from resnet import create_Res18
model = create_Res18()
elif arch == 'ResNet-50':
from resnet import create_Res50
model = create_Res50()
elif arch == 'MobileNet':
from mobilenet import create_MobileNet
model = create_MobileNet()
else:
raise ValueError('TODO')
return model