-
Notifications
You must be signed in to change notification settings - Fork 11
/
Train_WiCo_GID.py
199 lines (162 loc) · 7.52 KB
/
Train_WiCo_GID.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import time
import torch.autograd
from skimage import io
from torch import optim
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
working_path = os.path.dirname(os.path.abspath(__file__))
from utils.loss import CrossEntropyLoss2d
from utils.utils import accuracy, AverageMeter
# Choose model and data
##################################################
from datasets import GID_WiCo as GID
from models.WiCoNet import WiCoNet as Net
NET_NAME = 'WiCoNet_3hw4L'
DATA_NAME = 'GID'
##################################################
# Change training parameters here
args = {
'train_batch_size': 32,
'val_batch_size': 32,
'lr': 0.1,
'epochs': 50,
'gpu': True,
'size_local': 256,
'size_context': 256 * 3,
'momentum': 0.9,
'crop_nums': 100,
'weight_decay': 5e-4,
'lr_decay_power': 1.5,
'print_freq': 100,
'save_pred': True,
'num_workers': 4,
'data_dir': 'YOUR_DATA_DIR',
'pred_dir': os.path.join(working_path, 'results', DATA_NAME),
'chkpt_dir': os.path.join(working_path, 'checkpoints', DATA_NAME),
'log_dir': os.path.join(working_path, 'logs', DATA_NAME, NET_NAME)
}
if not os.path.exists(args['chkpt_dir']): os.makedirs(args['chkpt_dir'])
if not os.path.exists(args['pred_dir']): os.makedirs(args['pred_dir'])
if not os.path.exists(args['log_dir']): os.makedirs(args['log_dir'])
writer = SummaryWriter(args['log_dir'])
def main():
net = Net(4, num_classes=GID.num_classes + 1, size_context=args['size_context'],
size_local=args['size_local']).cuda()
train_set = GID.Loader(args['data_dir'], 'train', random_crop=True, crop_nums=args['crop_nums'], random_flip=True,
size_context=args['size_context'], size_local=args['size_local'])
train_loader = DataLoader(train_set, batch_size=args['train_batch_size'], num_workers=args['num_workers'], shuffle=True)
val_set = GID.Loader(args['data_dir'], 'val', sliding_crop=True, size_context=args['size_context'], size_local=args['size_local'])
val_loader = DataLoader(val_set, batch_size=args['val_batch_size'], num_workers=args['num_workers'], shuffle=False)
criterion = CrossEntropyLoss2d(ignore_index=0).cuda()
optimizer = optim.SGD(filter(lambda p: p.requires_grad, net.parameters()), lr=args['lr'],
weight_decay=args['weight_decay'], momentum=args['momentum'], nesterov=True)
train(train_loader, net, criterion, optimizer, val_loader)
writer.close()
print('Training finished.')
def train(train_loader, net, criterion, optimizer, val_loader):
bestaccT = 0
bestaccV = 0.5
bestloss = 1
curr_epoch = 0
begin_time = time.time()
all_iters = float(len(train_loader) * args['epochs'])
while True:
torch.cuda.empty_cache()
net.train()
start = time.time()
acc_meter = AverageMeter()
train_loss = AverageMeter()
curr_iter = curr_epoch * len(train_loader)
for i, data in enumerate(train_loader):
running_iter = curr_iter + i + 1
adjust_learning_rate(optimizer, running_iter, all_iters)
imgs_s, labels_s, imgs, labels = data
if args['gpu']:
imgs = imgs.cuda().float()
labels = labels.cuda().long()
imgs_s = imgs_s.cuda().float()
labels_s = labels_s.cuda().long()
optimizer.zero_grad()
outputs, aux = net(imgs_s, imgs)
alpha = calc_alpha(running_iter, all_iters)
main_loss = criterion(outputs, labels)
aux_loss = criterion(aux, labels_s)
loss = main_loss + alpha * aux_loss
loss.backward()
optimizer.step()
labels = labels.cpu().detach().numpy()
outputs = outputs.cpu().detach()
preds = torch.argmax(outputs, dim=1)
preds = preds.numpy()
# batch_valid_sum = 0
acc_curr_meter = AverageMeter()
for (pred, label) in zip(preds, labels):
acc, valid_sum = accuracy(pred, label)
acc_curr_meter.update(acc)
acc_meter.update(acc_curr_meter.avg)
train_loss.update(loss.cpu().detach().numpy())
curr_time = time.time() - start
if (i + 1) % args['print_freq'] == 0:
print('[epoch %d] [iter %d / %d %.1fs] [lr %f] [train loss %.4f acc %.2f]' % (
curr_epoch, i + 1, len(train_loader), curr_time, optimizer.param_groups[0]['lr'],
train_loss.val, acc_meter.val * 100))
writer.add_scalar('train loss', train_loss.val, running_iter)
writer.add_scalar('train accuracy', acc_meter.val, running_iter)
writer.add_scalar('lr', optimizer.param_groups[0]['lr'], running_iter)
acc_v, loss_v = validate(val_loader, net, criterion, curr_epoch)
if acc_meter.avg > bestaccT: bestaccT = acc_meter.avg
if acc_v > bestaccV:
bestaccV = acc_v
bestloss = loss_v
save_path = os.path.join(args['chkpt_dir'], NET_NAME + '_%de_OA%.2f.pth' % (curr_epoch, acc_v * 100))
torch.save(net.state_dict(), save_path)
print('Total time: %.1fs Best rec: Train %.2f, Val %.2f, Val_loss %.4f' \
% (time.time() - begin_time, bestaccT * 100, bestaccV * 100, bestloss))
curr_epoch += 1
if curr_epoch >= args['epochs']:
return
def validate(val_loader, net, criterion, curr_epoch):
# the following code is written assuming that batch size is 1
net.eval()
torch.cuda.empty_cache()
start = time.time()
val_loss = AverageMeter()
acc_meter = AverageMeter()
for vi, data in enumerate(val_loader):
imgs_s, labels_s, imgs, labels = data
if args['gpu']:
imgs = imgs.cuda().float()
labels = labels.cuda().long()
imgs_s = imgs_s.cuda().float()
with torch.no_grad():
outputs, _ = net(imgs_s, imgs)
loss = criterion(outputs, labels)
val_loss.update(loss.cpu().detach().numpy())
outputs = outputs.cpu().detach()
labels = labels.cpu().detach().numpy()
preds = torch.argmax(outputs, dim=1)
preds = preds.numpy()
for (pred, label) in zip(preds, labels):
acc, valid_sum = accuracy(pred, label)
acc_meter.update(acc)
if args['save_pred'] and vi == 0:
pred_color = GID.Index2Color(preds[0])
pred_path = os.path.join(args['pred_dir'], NET_NAME + '.png')
io.imsave(pred_path, pred_color)
print('Prediction saved!')
curr_time = time.time() - start
print('%.1fs Val loss: %.2f Accuracy: %.2f' % (curr_time, val_loss.average(), acc_meter.average() * 100))
writer.add_scalar('val_loss', val_loss.average(), curr_epoch)
writer.add_scalar('val_Accuracy', acc_meter.average(), curr_epoch)
return acc_meter.avg, val_loss.avg
def calc_alpha(curr_iter, all_iters, weight=1.0):
r = (1.0 - float(curr_iter) / all_iters) ** 2.0
return weight * r
def adjust_learning_rate(optimizer, curr_iter, all_iter):
scale_running_lr = ((1. - float(curr_iter) / all_iter) ** args['lr_decay_power'])
running_lr = args['lr'] * scale_running_lr
for param_group in optimizer.param_groups:
param_group['lr'] = running_lr
if __name__ == '__main__':
main()