-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
59 lines (50 loc) · 1.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from sklearn import svm, linear_model
from xgboost import XGBRegressor
from Dataset import Dataset
import numpy as np
import json
from sklearn.ensemble import RandomForestRegressor
def train(if_test=False):
#define a xgb model
xgb = XGBRegressor(
max_depth=5,
learning_rate=0.1,
n_estimators=100,
silent=True,
objective='reg:linear')
#define a random forest model
rf = RandomForestRegressor(
n_estimators=100,
max_depth=5,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features='auto')
#train models
train_path = '/home/sysadm/train_data'
dataset = Dataset(blank_fill = 'avg', window_size = 7, use_KG = False, use_log = False, test_last = False, path=train_path)
xgb.fit(dataset.X, dataset.Y)
print("xgb model trained")
if if_test:
test_path = '/home/sysadm/test_data'
test_data = Dataset(blank_fill = 'avg', window_size = 7, use_KG = False, use_log = False, test_last = False, path=test_path)
pred_y = xgb.predict(test_data.X)
#save the prediction result in json file
with open('prediction.json', 'w') as f:
json.dump(pred_y.tolist(), f)
#find the most important features
count = 0
res = {}
feature_names = dataset.get_colnames()
for i in np.argsort(xgb.feature_importances_)[::-1]:
if count < 10 and i<len(feature_names):
#save the most important features in res
res[feature_names[i]] = xgb.feature_importances_[i]
count += 1
if count == 10:
break
#save the most important features in json file
with open('feature_importance.json', 'w') as f:
json.dump(res, f)
if __name__ == "__main__":
train(if_test=False)