forked from zhangqianhui/Conditional-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
executable file
·53 lines (39 loc) · 1.64 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from model_mnist import CGAN
import tensorflow as tf
from utils import Mnist
import os
flags = tf.app.flags
flags.DEFINE_string("sample_dir" , "samples_for_test" , "the dir of sample images")
flags.DEFINE_integer("output_size", 28 , "the size of generate image")
flags.DEFINE_float("learn_rate", 0.0002, "the learning rate for gan")
flags.DEFINE_integer("batch_size", 64, "the batch number")
flags.DEFINE_integer("z_dim", 100, "the dimension of noise z")
flags.DEFINE_integer("y_dim", 10, "the dimension of condition y")
flags.DEFINE_string("log_dir" , "/tmp/tensorflow_mnist" , "the path of tensorflow's log")
flags.DEFINE_string("model_path" , "model/model.ckpt" , "the path of model")
flags.DEFINE_string("visua_path" , "visualization" , "the path of visuzation images")
flags.DEFINE_integer("op" , 0, "0: train ; 1:test ; 2:visualize")
FLAGS = flags.FLAGS
#
if not os.path.exists(FLAGS.sample_dir):
os.makedirs(FLAGS.sample_dir)
if not os.path.exists(FLAGS.log_dir):
os.makedirs(FLAGS.log_dir)
if not os.path.exists(FLAGS.model_path):
os.makedirs(FLAGS.model_path)
if not os.path.exists(FLAGS.visua_path):
os.makedirs(FLAGS.visua_path)
def main(_):
mn_object = Mnist()
cg = CGAN(data_ob = mn_object, sample_dir = FLAGS.sample_dir, output_size=FLAGS.output_size, learn_rate=FLAGS.learn_rate
, batch_size=FLAGS.batch_size, z_dim=FLAGS.z_dim, y_dim=FLAGS.y_dim, log_dir=FLAGS.log_dir
, model_path=FLAGS.model_path, visua_path=FLAGS.visua_path)
cg.build_model()
if FLAGS.op == 0:
cg.train()
elif FLAGS.op == 1:
cg.test()
else:
cg.visual()
if __name__ == '__main__':
tf.app.run()