-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrainer.py
376 lines (320 loc) · 11.6 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
"""
References
----------
[1] https://github.com/milesial/Pytorch-UNet/blob/master/train.py
"""
import argparse
import os
import sys
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
try:
from tqdm.auto import tqdm # noqa: F401
except ModuleNotFoundError:
from tqdm import tqdm # noqa: F401
import torch
from torch import nn
from torch.nn.parallel import DataParallel as DP
from torch.nn.parallel import DistributedDataParallel as DDP # noqa: F401
from torch.utils.data import DataLoader, Dataset
try:
import torch_ecg # noqa: F401
except ModuleNotFoundError:
from pathlib import Path
sys.path.insert(0, str(Path(__file__).absolute().parents[2]))
from cfg import ModelCfg, TrainCfg
from dataset import LUDB
from metrics import compute_metrics
from model import ECG_UNET_LUDB
from torch_ecg.cfg import CFG
from torch_ecg.components.trainer import BaseTrainer
from torch_ecg.utils.misc import str2bool
from torch_ecg.utils.utils_nn import default_collate_fn as collate_fn
LUDB.__DEBUG__ = False
ECG_UNET_LUDB.__DEBUG__ = False
if TrainCfg.torch_dtype == torch.float64:
torch.set_default_tensor_type(torch.DoubleTensor)
__all__ = [
"LUDBTrainer",
]
class LUDBTrainer(BaseTrainer):
""" """
__DEBUG__ = True
__name__ = "LUDBTrainer"
def __init__(
self,
model: nn.Module,
model_config: dict,
train_config: dict,
device: Optional[torch.device] = None,
lazy: bool = True,
**kwargs: Any,
) -> None:
"""
Parameters
----------
model: Module,
the model to be trained
model_config: dict,
the configuration of the model,
used to keep a record in the checkpoints
train_config: dict,
the configuration of the training,
including configurations for the data loader, for the optimization, etc.
will also be recorded in the checkpoints.
`train_config` should at least contain the following keys:
"monitor": str,
"loss": str,
"n_epochs": int,
"batch_size": int,
"learning_rate": float,
"lr_scheduler": str,
"lr_step_size": int, optional, depending on the scheduler
"lr_gamma": float, optional, depending on the scheduler
"max_lr": float, optional, depending on the scheduler
"optimizer": str,
"decay": float, optional, depending on the optimizer
"momentum": float, optional, depending on the optimizer
device: torch.device, optional,
the device to be used for training
lazy: bool, default True,
whether to initialize the data loader lazily
"""
super().__init__(
model=model,
dataset_cls=LUDB,
model_config=model_config,
train_config=train_config,
device=device,
lazy=lazy,
)
def _setup_dataloaders(
self,
train_dataset: Optional[Dataset] = None,
val_dataset: Optional[Dataset] = None,
) -> None:
"""
setup the dataloaders for training and validation
Parameters
----------
train_dataset: Dataset, optional,
the training dataset
val_dataset: Dataset, optional,
the validation dataset
"""
if train_dataset is None:
train_dataset = self.dataset_cls(config=self.train_config, training=True, lazy=False)
if self.train_config.debug:
val_train_dataset = train_dataset
else:
val_train_dataset = None
if val_dataset is None:
val_dataset = self.dataset_cls(config=self.train_config, training=False, lazy=False)
# https://discuss.pytorch.org/t/guidelines-for-assigning-num-workers-to-dataloader/813/4
num_workers = 4
self.train_loader = DataLoader(
dataset=train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
drop_last=False,
collate_fn=collate_fn,
)
if self.train_config.debug:
self.val_train_loader = DataLoader(
dataset=val_train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
drop_last=False,
collate_fn=collate_fn,
)
else:
self.val_train_loader = None
self.val_loader = DataLoader(
dataset=val_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
drop_last=False,
collate_fn=collate_fn,
)
def run_one_step(self, *data: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Parameters
----------
data: tuple of Tensors,
the data to be processed for training one step (batch),
should be of the following order:
signals, labels, *extra_tensors
Returns
-------
preds: Tensor,
the predictions of the model for the given data
labels: Tensor,
the labels of the given data
"""
signals, labels = data
signals = signals.to(self.device)
# labels of shape (batch_size, seq_len) if loss is CrossEntropyLoss
# otherwise of shape (batch_size, seq_len, n_classes)
labels = labels.to(self.device)
preds = self.model(signals) # of shape (batch_size, seq_len, n_classes)
if self.train_config.loss == "CrossEntropyLoss":
preds = preds.permute(0, 2, 1) # of shape (batch_size, n_classes, seq_len)
# or use the following
# preds = pres.reshape(-1, preds.shape[-1]) # of shape (batch_size * seq_len, n_classes)
# labels = labels.reshape(-1) # of shape (batch_size * seq_len,)
return preds, labels
@torch.no_grad()
def evaluate(self, data_loader: DataLoader) -> Dict[str, float]:
""" """
self.model.eval()
all_scalar_preds = []
all_mask_preds = []
all_labels = []
for signals, labels in data_loader:
signals = signals.to(device=self.device, dtype=self.dtype)
labels = labels.numpy()
all_labels.append(labels)
if torch.cuda.is_available():
torch.cuda.synchronize()
model_output = self._model.inference(signals)
all_scalar_preds.append(model_output.prob)
all_mask_preds.append(model_output.mask)
# all_scalar_preds of shape (n_samples, seq_len, n_classes)
all_scalar_preds = np.concatenate(all_scalar_preds, axis=0)
# all_scalar_preds of shape (n_samples, seq_len)
all_mask_preds = np.concatenate(all_mask_preds, axis=0)
# all_labels of shape (n_samples, seq_len) if loss is CrossEntropyLoss
# otherwise of shape (n_samples, seq_len, n_classes)
all_labels = np.concatenate(all_labels, axis=0)
if self.train_config.loss != "CrossEntropyLoss":
all_labels = all_labels.argmax(axis=-1) # (n_samples, seq_len, n_classes) -> (n_samples, seq_len)
# print(f"all_labels.shape: {all_labels.shape}, nan: {np.isnan(all_labels).any()}, inf: {np.isinf(all_labels).any()}")
# print(f"all_scalar_preds.shape: {all_scalar_preds.shape}, nan: {np.isnan(all_scalar_preds).any()}, inf: {np.isinf(all_scalar_preds).any()}")
# print(f"all_mask_preds.shape: {all_mask_preds.shape}, nan: {np.isnan(all_mask_preds).any()}, inf: {np.isinf(all_mask_preds).any()}")
# eval_res are scorings of onsets and offsets of pwaves, qrs complexes, twaves,
# each scoring is a dict consisting of the following metrics:
# sensitivity, precision, f1_score, mean_error, standard_deviation
eval_res_split = compute_metrics(
np.repeat(all_labels[:, np.newaxis, :], self.model_config.n_leads, axis=1),
np.repeat(all_mask_preds[:, np.newaxis, :], self.model_config.n_leads, axis=1),
self._cm,
self.train_config.fs,
)
# TODO: provide numerical values for the metrics from all of the dicts of eval_res
eval_res = {
metric: np.nanmean([eval_res_split[f"{wf}_{pos}"][metric] for wf in self._cm for pos in ["onset", "offset"]])
for metric in [
"sensitivity",
"precision",
"f1_score",
"mean_error",
"standard_deviation",
]
}
self.model.train()
return eval_res
@property
def _cm(self) -> Dict[str, str]:
""" """
return {
"pwave": self.train_config.class_map["p"],
"qrs": self.train_config.class_map["N"],
"twave": self.train_config.class_map["t"],
}
@property
def batch_dim(self) -> int:
"""
batch dimension,
"""
return 0
@property
def extra_required_train_config_fields(self) -> List[str]:
""" """
return []
# @property
# def save_prefix(self) -> str:
# return f"{self._model.__name__}_{self.model_config.cnn.name}_epoch"
# def extra_log_suffix(self) -> str:
# return super().extra_log_suffix() + f"_{self.model_config.cnn.name}"
def get_args(**kwargs):
""" """
cfg = deepcopy(kwargs)
parser = argparse.ArgumentParser(
description="Train the Model on LUDB",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# parser.add_argument(
# "-l", "--learning-rate",
# metavar="LR", type=float, nargs="?", default=0.001,
# help="Learning rate",
# dest="learning_rate")
parser.add_argument(
"-b",
"--batch-size",
type=int,
default=32,
help="the batch size for training",
dest="batch_size",
)
parser.add_argument(
"-m",
"--model-name",
type=str,
default="unet",
help="name of the model to train, `unet` or `subtract_unet`",
dest="model_name",
)
parser.add_argument(
"--keep-checkpoint-max",
type=int,
default=50,
help="maximum number of checkpoints to keep. If set 0, all checkpoints will be kept",
dest="keep_checkpoint_max",
)
parser.add_argument(
"--optimizer",
type=str,
default="adamw_amsgrad",
help="training optimizer",
dest="train_optimizer",
)
parser.add_argument(
"--debug",
type=str2bool,
default=False,
help="train with more debugging information",
dest="debug",
)
args = vars(parser.parse_args())
cfg.update(args)
return CFG(cfg)
if __name__ == "__main__":
train_config = get_args(**TrainCfg)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_config = deepcopy(ModelCfg)
model = ECG_UNET_LUDB(n_leads=model_config.n_leads, config=model_config)
if torch.cuda.device_count() > 1:
model = DP(model)
# model = DDP(model)
model.to(device=device)
trainer = LUDBTrainer(
model=model,
model_config=model_config,
train_config=train_config,
device=device,
lazy=False,
)
try:
best_model_state_dict = trainer.train()
except KeyboardInterrupt:
try:
sys.exit(0)
except SystemExit:
os._exit(0)