-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcfg.py
363 lines (307 loc) · 12.8 KB
/
cfg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
"""
"""
import os
from copy import deepcopy
from easydict import EasyDict as ED
from torch_ecg.torch_ecg.model_configs import ( # noqa: F401
ECG_SEQ_LAB_NET_CONFIG,
ECG_SUBTRACT_UNET_CONFIG,
ECG_UNET_VANILLA_CONFIG,
RR_AF_CRF_CONFIG,
RR_AF_VANILLA_CONFIG,
RR_LSTM_CONFIG,
attention,
dense_net_leadwise,
global_context,
linear,
lstm,
multi_scopic,
multi_scopic_block,
multi_scopic_leadwise,
non_local,
resnet,
resnet_block_basic,
resnet_block_stanford,
resnet_bottle_neck,
resnet_leadwise,
resnet_stanford,
squeeze_excitation,
vgg16,
vgg16_leadwise,
vgg_block_basic,
vgg_block_mish,
vgg_block_swish,
xception_leadwise,
)
__all__ = [
"BaseCfg",
"TrainCfg",
"ModelCfg",
"PlotCfg",
]
_BASE_DIR = os.path.dirname(os.path.abspath(__file__))
BaseCfg = ED()
# BaseCfg.db_dir = "/home/taozi/Data/CPSC2021/"
BaseCfg.db_dir = "/home/wenhao/Jupyter/wenhao/data/CPSC2021/"
BaseCfg.log_dir = os.path.join(_BASE_DIR, "log")
BaseCfg.model_dir = os.path.join(_BASE_DIR, "saved_models")
os.makedirs(BaseCfg.log_dir, exist_ok=True)
os.makedirs(BaseCfg.model_dir, exist_ok=True)
BaseCfg.test_data_dir = os.path.join(_BASE_DIR, "working_dir", "sample_data")
BaseCfg.fs = 200
BaseCfg.n_leads = 2
BaseCfg.torch_dtype = "float" # "double"
BaseCfg.class_fn2abbr = { # fullname to abbreviation
"non atrial fibrillation": "N",
"paroxysmal atrial fibrillation": "AFp",
"persistent atrial fibrillation": "AFf",
}
BaseCfg.class_abbr2fn = {v: k for k, v in BaseCfg.class_fn2abbr.items()}
BaseCfg.class_fn_map = { # fullname to number
"non atrial fibrillation": 0,
"paroxysmal atrial fibrillation": 2,
"persistent atrial fibrillation": 1,
}
BaseCfg.class_abbr_map = {k: BaseCfg.class_fn_map[v] for k, v in BaseCfg.class_abbr2fn.items()}
BaseCfg.bias_thr = 0.15 * BaseCfg.fs # rhythm change annotations onsets or offset of corresponding R peaks
BaseCfg.beat_ann_bias_thr = 0.1 * BaseCfg.fs # half width of broad qrs complex
BaseCfg.beat_winL = 250 * BaseCfg.fs // 1000 # corr. to 250 ms
BaseCfg.beat_winR = 250 * BaseCfg.fs // 1000 # corr. to 250 ms
TrainCfg = ED()
# common confis for all training tasks
TrainCfg.fs = BaseCfg.fs
TrainCfg.n_leads = BaseCfg.n_leads
TrainCfg.data_format = "channel_first"
TrainCfg.db_dir = BaseCfg.db_dir
TrainCfg.log_dir = BaseCfg.log_dir
TrainCfg.model_dir = BaseCfg.model_dir
TrainCfg.checkpoints = os.path.join(_BASE_DIR, "checkpoints")
os.makedirs(TrainCfg.checkpoints, exist_ok=True)
TrainCfg.keep_checkpoint_max = 20
TrainCfg.debug = True
# preprocessing configs
# sequential, keep correct ordering, to add 'motion_artefact'
TrainCfg.preproc = [
"bandpass",
] # 'baseline',
# for 200 ms and 600 ms, ref. (`ecg_classification` in `reference`)
# TrainCfg.baseline_window1 = int(0.2*TrainCfg.fs) # 200 ms window
# TrainCfg.baseline_window2 = int(0.6*TrainCfg.fs) # 600 ms window
TrainCfg.filter_band = [0.5, 45]
# TrainCfg.parallel_epoch_len = 600 # second
# TrainCfg.parallel_epoch_overlap = 10 # second
# TrainCfg.parallel_keep_tail = True
# TrainCfg.rpeaks = 'seq_lab' # 'xqrs
# or 'gqrs', or 'pantompkins', 'hamilton', 'ssf', 'christov', 'engzee', 'gamboa'
# or empty string '' if not detecting rpeaks
"""
for qrs detectors:
`xqrs` sometimes detects s peak (valley) as r peak,
but according to Jeethan, `xqrs` has the best performance
"""
# least distance of an valid R peak to two ends of ECG signals
TrainCfg.rpeaks_dist2border = int(0.5 * TrainCfg.fs) # 0.5s
TrainCfg.qrs_mask_bias = int(0.075 * TrainCfg.fs) # bias to rpeaks
TrainCfg.normalize_data = True
# data augmentation
TrainCfg.label_smoothing = 0.1
TrainCfg.random_mask = int(TrainCfg.fs * 0.0) # 1.0s, 0 for no masking
TrainCfg.stretch_compress = 5 # stretch or compress in time axis, units in percentage (0 - inf)
TrainCfg.stretch_compress_prob = 0.3 # probability of performing stretch or compress
TrainCfg.random_normalize = True # (re-)normalize to random mean and std
# valid segments has
# median of mean appr. 0, mean of mean 0.038
# median of std 0.13, mean of std 0.18
TrainCfg.random_normalize_mean = [-0.05, 0.1]
TrainCfg.random_normalize_std = [0.08, 0.32]
# TrainCfg.baseline_wander = True # randomly shifting the baseline
# TrainCfg.bw = TrainCfg.baseline_wander # alias
# TrainCfg.bw_fs = np.array([0.33, 0.1, 0.05, 0.01])
# TrainCfg.bw_ampl_ratio = np.array([
# [0.01, 0.01, 0.02, 0.03], # low
# [0.01, 0.02, 0.04, 0.05], # low
# [0.1, 0.06, 0.04, 0.02], # low
# [0.02, 0.04, 0.07, 0.1], # low
# [0.05, 0.1, 0.16, 0.25], # medium
# [0.1, 0.15, 0.25, 0.3], # high
# [0.25, 0.25, 0.3, 0.35], # extremely high
# ])
# TrainCfg.bw_gaussian = np.array([ # mean and std, ratio
# [0.0, 0.0],
# [0.0, 0.0],
# [0.0, 0.0], # ensure at least one with no gaussian noise
# [0.0, 0.003],
# [0.0, 0.01],
# ])
TrainCfg.flip = [-1] + [1] * 4 # making the signal upside down, with probability 1/(1+4)
# TODO: explore and add more data augmentations
# configs of training epochs, batch, etc.
TrainCfg.n_epochs = 20
TrainCfg.batch_size = 64
TrainCfg.train_ratio = 0.8
# configs of optimizers and lr_schedulers
TrainCfg.train_optimizer = "adamw_amsgrad" # "sgd", "adam", "adamw"
TrainCfg.momentum = 0.949 # default values for corresponding PyTorch optimizers
TrainCfg.betas = (0.9, 0.999) # default values for corresponding PyTorch optimizers
TrainCfg.decay = 1e-2 # default values for corresponding PyTorch optimizers
TrainCfg.learning_rate = 1e-3 # 1e-4
TrainCfg.lr = TrainCfg.learning_rate
TrainCfg.lr_scheduler = None # "one_cycle", "plateau", "burn_in", "step", None
TrainCfg.lr_step_size = 50
TrainCfg.lr_gamma = 0.1
TrainCfg.max_lr = 1e-2 # for "one_cycle" scheduler, to adjust via expriments
TrainCfg.early_stopping = ED() # early stopping according to challenge metric
TrainCfg.early_stopping.min_delta = 0.001 # should be non-negative
TrainCfg.early_stopping.patience = 5
# configs of loss function
# "MaskedBCEWithLogitsLoss", "BCEWithLogitsWithClassWeightLoss" # "BCELoss"
TrainCfg.loss = "BCEWithLogitsLoss"
TrainCfg.flooding_level = 0.0 # flooding performed if positive
TrainCfg.log_step = 20
TrainCfg.eval_every = 20
# tasks of training
TrainCfg.tasks = [
"qrs_detection",
"rr_lstm",
"main",
]
# configs of model selection
# "resnet_leadwise", "multi_scopic_leadwise", "vgg16", "resnet", "vgg16_leadwise", "cpsc", "cpsc_leadwise", etc.
for t in TrainCfg.tasks:
TrainCfg[t] = ED()
TrainCfg.qrs_detection.final_model_name = None
TrainCfg.qrs_detection.model_name = "seq_lab" # "unet"
TrainCfg.qrs_detection.reduction = 8
TrainCfg.qrs_detection.cnn_name = "multi_scopic"
TrainCfg.qrs_detection.rnn_name = "lstm" # "none", "lstm"
TrainCfg.qrs_detection.attn_name = "se" # "none", "se", "gc", "nl"
TrainCfg.qrs_detection.input_len = int(30 * TrainCfg.fs)
TrainCfg.qrs_detection.overlap_len = int(15 * TrainCfg.fs)
TrainCfg.qrs_detection.critical_overlap_len = int(25 * TrainCfg.fs)
TrainCfg.qrs_detection.classes = [
"N",
]
TrainCfg.qrs_detection.monitor = "qrs_score" # monitor for determining the best model
TrainCfg.qrs_detection.loss = TrainCfg.loss
TrainCfg.rr_lstm.final_model_name = None
TrainCfg.rr_lstm.model_name = "lstm" # "lstm", "lstm_crf"
TrainCfg.rr_lstm.input_len = 30 # number of rr intervals ( number of rpeaks - 1)
TrainCfg.rr_lstm.overlap_len = 15 # number of rr intervals ( number of rpeaks - 1)
TrainCfg.rr_lstm.critical_overlap_len = 25 # number of rr intervals ( number of rpeaks - 1)
TrainCfg.rr_lstm.classes = [
"af",
]
TrainCfg.rr_lstm.monitor = "neg_masked_bce" # "rr_score", "neg_masked_bce" # monitor for determining the best model
TrainCfg.rr_lstm.loss = "MaskedBCEWithLogitsLoss"
TrainCfg.main.final_model_name = None
TrainCfg.main.model_name = "seq_lab" # "unet"
TrainCfg.main.reduction = 8
TrainCfg.main.cnn_name = "multi_scopic"
TrainCfg.main.rnn_name = "lstm" # "none", "lstm"
TrainCfg.main.attn_name = "se" # "none", "se", "gc", "nl"
TrainCfg.main.input_len = int(30 * TrainCfg.fs)
TrainCfg.main.overlap_len = int(15 * TrainCfg.fs)
TrainCfg.main.critical_overlap_len = int(25 * TrainCfg.fs)
TrainCfg.main.classes = [
"af",
]
TrainCfg.main.monitor = "neg_masked_bce" # "main_score", "neg_masked_bce" # monitor for determining the best model
TrainCfg.main.loss = "MaskedBCEWithLogitsLoss"
# Plan:
# R-peak detection using UNets, sequence labelling,
# main task via RR-LSTM using sequence of R peaks as input
# main task via UNets, sequence labelling using raw ECGs
_BASE_MODEL_CONFIG = ED()
_BASE_MODEL_CONFIG.torch_dtype = BaseCfg.torch_dtype
_BASE_MODEL_CONFIG.fs = BaseCfg.fs
_BASE_MODEL_CONFIG.n_leads = BaseCfg.n_leads
ModelCfg = deepcopy(_BASE_MODEL_CONFIG)
for t in TrainCfg.tasks:
ModelCfg[t] = deepcopy(_BASE_MODEL_CONFIG)
ModelCfg[t].task = t
ModelCfg.qrs_detection.input_len = TrainCfg.qrs_detection.input_len
ModelCfg.qrs_detection.classes = TrainCfg.qrs_detection.classes
ModelCfg.qrs_detection.model_name = TrainCfg.qrs_detection.model_name
ModelCfg.qrs_detection.cnn_name = TrainCfg.qrs_detection.cnn_name
ModelCfg.qrs_detection.rnn_name = TrainCfg.qrs_detection.rnn_name
ModelCfg.qrs_detection.attn_name = TrainCfg.qrs_detection.attn_name
# the following is a comprehensive choices for different choices of qrs_detection task
ModelCfg.qrs_detection.seq_lab = deepcopy(ECG_SEQ_LAB_NET_CONFIG)
ModelCfg.qrs_detection.seq_lab.fs = BaseCfg.fs
ModelCfg.qrs_detection.seq_lab.reduction = TrainCfg.qrs_detection.reduction
ModelCfg.qrs_detection.seq_lab.cnn.name = ModelCfg.qrs_detection.cnn_name
ModelCfg.qrs_detection.seq_lab.rnn.name = ModelCfg.qrs_detection.rnn_name
ModelCfg.qrs_detection.seq_lab.attn.name = ModelCfg.qrs_detection.attn_name
ModelCfg.qrs_detection.seq_lab.cnn.multi_scopic.filter_lengths = [
[5, 5, 3],
[7, 5, 3],
[7, 5, 3],
]
ModelCfg.qrs_detection.unet = deepcopy(ECG_UNET_VANILLA_CONFIG)
ModelCfg.qrs_detection.unet.fs = BaseCfg.fs
ModelCfg.rr_lstm.input_len = TrainCfg.rr_lstm.input_len
ModelCfg.rr_lstm.classes = TrainCfg.rr_lstm.classes
ModelCfg.rr_lstm.model_name = TrainCfg.rr_lstm.model_name
ModelCfg.rr_lstm.lstm = deepcopy(RR_AF_VANILLA_CONFIG)
ModelCfg.rr_lstm.lstm.global_pool = "none"
ModelCfg.rr_lstm.lstm.attn = ED()
ModelCfg.rr_lstm.lstm.attn.name = "se" # "gc"
ModelCfg.rr_lstm.lstm.attn.se = ED()
ModelCfg.rr_lstm.lstm.attn.se.reduction = 8 # not including the last linear layer
ModelCfg.rr_lstm.lstm.attn.se.activation = "relu"
ModelCfg.rr_lstm.lstm.attn.se.kw_activation = ED(inplace=True)
ModelCfg.rr_lstm.lstm.attn.se.bias = True
ModelCfg.rr_lstm.lstm.attn.se.kernel_initializer = "he_normal"
ModelCfg.rr_lstm.lstm_crf = deepcopy(RR_AF_CRF_CONFIG)
ModelCfg.rr_lstm.lstm_crf.attn = ED()
ModelCfg.rr_lstm.lstm_crf.attn.name = "se" # "gc"
ModelCfg.rr_lstm.lstm_crf.attn.se = ED()
ModelCfg.rr_lstm.lstm_crf.attn.se.reduction = 8 # not including the last linear layer
ModelCfg.rr_lstm.lstm_crf.attn.se.activation = "relu"
ModelCfg.rr_lstm.lstm_crf.attn.se.kw_activation = ED(inplace=True)
ModelCfg.rr_lstm.lstm_crf.attn.se.bias = True
ModelCfg.rr_lstm.lstm_crf.attn.se.kernel_initializer = "he_normal"
if ModelCfg.rr_lstm[ModelCfg.rr_lstm.model_name].clf.name == "crf":
TrainCfg.rr_lstm.loss = "BCELoss"
# the following is a comprehensive choices for different choices of rr_lstm task
ModelCfg.main.input_len = TrainCfg.main.input_len
ModelCfg.main.classes = TrainCfg.main.classes
ModelCfg.main.model_name = TrainCfg.main.model_name
ModelCfg.main.cnn_name = TrainCfg.main.cnn_name
ModelCfg.main.rnn_name = TrainCfg.main.rnn_name
ModelCfg.main.attn_name = TrainCfg.main.attn_name
# the following is a comprehensive choices for different choices of main task
ModelCfg.main.seq_lab = deepcopy(ECG_SEQ_LAB_NET_CONFIG)
ModelCfg.main.seq_lab.fs = BaseCfg.fs
ModelCfg.main.seq_lab.reduction = TrainCfg.main.reduction
ModelCfg.main.seq_lab.cnn.name = ModelCfg.main.cnn_name
ModelCfg.main.seq_lab.rnn.name = ModelCfg.main.rnn_name
ModelCfg.main.seq_lab.attn.name = ModelCfg.main.attn_name
ModelCfg.main.seq_lab.cnn.multi_scopic.filter_lengths = [
[3, 3, 3],
[5, 5, 3],
[9, 7, 5],
]
ModelCfg.main.unet = deepcopy(ECG_UNET_VANILLA_CONFIG)
ModelCfg.main.unet.fs = BaseCfg.fs
ModelCfg.main.unet.reduction = 1
ModelCfg.main.unet.init_num_filters = 16 # keep the same with n_classes
ModelCfg.main.unet.down_num_filters = [
ModelCfg.main.unet.init_num_filters * (2**idx) for idx in range(1, ModelCfg.main.unet.down_up_block_num + 1)
]
ModelCfg.main.unet.up_num_filters = [
ModelCfg.main.unet.init_num_filters * (2**idx) for idx in range(ModelCfg.main.unet.down_up_block_num - 1, -1, -1)
]
ModelCfg.main.unet.up_mode = "deconv"
# configurations for visualization
PlotCfg = ED()
# default const for the plot function in dataset.py
# used only when corr. values are absent
# all values are time bias w.r.t. corr. peaks, with units in ms
PlotCfg.p_onset = -40
PlotCfg.p_offset = 40
PlotCfg.q_onset = -20
PlotCfg.s_offset = 40
PlotCfg.qrs_radius = 60
PlotCfg.t_onset = -100
PlotCfg.t_offset = 60