-
Notifications
You must be signed in to change notification settings - Fork 9
/
test.py
133 lines (106 loc) · 3.9 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import time
from operator import add
import tensorflow as tf
import numpy as np
from glob import glob
import cv2
from tqdm import tqdm
from sklearn.metrics import (
jaccard_score, f1_score, recall_score, precision_score, accuracy_score, fbeta_score)
from utils import create_dir, load_model_file
from data import load_data
def calculate_metrics(y_true, y_pred):
y_pred = y_pred > 0.5
y_pred = y_pred.reshape(-1)
y_pred = y_pred.astype(np.uint8)
y_true = y_true > 0.5
y_true = y_true.reshape(-1)
y_true = y_true.astype(np.uint8)
## Score
score_jaccard = jaccard_score(y_true, y_pred, average='binary')
score_f1 = f1_score(y_true, y_pred, average='binary')
score_recall = recall_score(y_true, y_pred, average='binary')
score_precision = precision_score(y_true, y_pred, average='binary', zero_division=1)
score_acc = accuracy_score(y_true, y_pred)
score_fbeta = fbeta_score(y_true, y_pred, beta=2.0, average='binary', zero_division=1)
return [score_jaccard, score_f1, score_recall, score_precision, score_acc, score_fbeta]
def mask_parse(mask):
mask = np.squeeze(mask)
mask = [mask, mask, mask]
mask = np.transpose(mask, (1, 2, 0))
return mask
if __name__ == "__main__":
""" Seeding """
np.random.seed(42)
tf.random.set_seed(42)
""" Load dataset """
path = "../../Kvasir-SEG/"
(train_x, train_y), (test_x, test_y) = load_data(path)
""" Hyperparameters """
size = (256, 256)
input_shape = (256, 256, 3)
model_name = "A"
model_path = f"files/{model_name}/model.h5"
""" Directories """
create_dir(f"results/{model_name}")
""" Load the model """
model = load_model_file(model_path)
""" Sample prediction: To improve FPS """
image = np.zeros((1, 256, 256, 3))
mask = model.predict(image)
""" Testing """
metrics_score = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
time_taken = []
for i, (x, y) in enumerate(zip(test_x, test_y)):
name = y.split("/")[-1].split(".")[0]
""" Image """
image = cv2.imread(x, cv2.IMREAD_COLOR)
image = cv2.resize(image, size)
ori_img = image
image = image/255.0
image = np.expand_dims(image, axis=0)
image = image.astype(np.float32)
""" Mask """
mask = cv2.imread(y, cv2.IMREAD_GRAYSCALE)
mask = cv2.resize(mask, size)
ori_mask = mask
mask = np.expand_dims(mask, axis=0)
mask = mask/255.0
mask = mask.astype(np.float32)
""" Time taken """
start_time = time.time()
pred_y = model.predict(image)
total_time = time.time() - start_time
time_taken.append(total_time)
print(f"{name}: {total_time:1.5f}")
""" Metrics calculation """
score = calculate_metrics(mask, pred_y)
metrics_score = list(map(add, metrics_score, score))
""" Saving masks """
pred_y = pred_y[0] > 0.5
pred_y = pred_y * 255
pred_y = np.array(pred_y, dtype=np.uint8)
ori_img = ori_img
ori_mask = mask_parse(ori_mask)
pred_y = mask_parse(pred_y)
sep_line = np.ones((size[0], 10, 3)) * 255
tmp = [
ori_img, sep_line,
ori_mask, sep_line,
pred_y
]
cat_images = np.concatenate(tmp, axis=1)
cv2.imwrite(f"results/{model_name}/{name}.png", cat_images)
jaccard = metrics_score[0]/len(test_x)
f1 = metrics_score[1]/len(test_x)
recall = metrics_score[2]/len(test_x)
precision = metrics_score[3]/len(test_x)
acc = metrics_score[4]/len(test_x)
f2 = metrics_score[5]/len(test_x)
print("")
print(f"Jaccard: {jaccard:1.4f} - F1: {f1:1.4f} - Recall: {recall:1.4f} - Precision: {precision:1.4f} - Acc: {acc:1.4f} - F2: {f2:1.4f}")
mean_time_taken = np.mean(time_taken)
mean_fps = 1/mean_time_taken
print("Mean FPS: ", mean_fps)