forked from graphitemaster/gmqcc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgmqcc.ini.example
745 lines (493 loc) · 23.9 KB
/
gmqcc.ini.example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
#This configuration file is similar to a regular .ini file. Comments start
#with hashtags or semicolons, sections are written in square brackets and
#in each section there can be arbitrary many key-value pairs.
#There are 3 sections currently: ‘flags’, ‘warnings’, ‘optimizations’.
#They contain a list of boolean values of the form ‘VARNAME = true’ or
#‘VARNAME = false’. The variable names are the same as for the corre‐
#sponding -W, -f or -O flag written with only capital letters and dashes
#replaced by underscores.
[flags]
#Add some additional characters to the string table in order to
#compensate for a wrong boundcheck in some specific version of the
#darkplaces engine.
DARKPLACES_STRING_TABLE_BUG = true
#When assigning to field pointers of type .vector the common be‐
#haviour in compilers like fteqcc is to only assign the x-compo‐
#nent of the pointer. This means that you can use the vector as
#such, but you cannot use its y and z components directly. This
#flag fixes this behaviour. Before using it make sure your code
#does not depend on the buggy behaviour.
ADJUST_VECTOR_FIELDS = true
#Enable a partially fteqcc-compatible preprocessor. It supports
#all the features used in the Xonotic codebase. If you need more,
#write a ticket.
FTEPP = true
#Enable some predefined macros. This only works in combination
#with '-fftepp' and is currently not included by '-std=fteqcc'.
#The following macros will be added:
#
# __LINE__
# __FILE__
# __COUNTER__
# __COUNTER_LAST__
# __RANDOM__
# __RANDOM_LAST__
# __DATE__
# __TIME__
# __FUNC__
#
#Note that __FUNC__ is not actually a preprocessor macro, but is
#recognized by the parser even with the preprocessor disabled.
#
#Note that fteqcc also defines __NULL__ which becomes the first
#global. Assigning it to a vector does not yield the same result
#as in gmqcc where __NULL__ is defined to nil (See -funtyped-nil
#), which will cause the vector to be zero in all components. With
#fteqcc only the first component will be 0, while the other two
#will become the first to of the global return value. This behav‐
#ior is odd and relying on it should be discouraged, and thus is
#not supported by gmqcc.
FTEPP_PREDEFS = false
#Enable math constant definitions. This only works in combination
#with '-fftepp' and is currently not included by '-std=fteqcc'.
#The following macros will be added:
#
# M_E
# M_LOG2E
# M_LOG10E
# M_LN2
# M_LN10
# M_PI
# M_PI_2
# M_PI_4
# M_1_PI
# M_2_PI
# M_2_SQRTPI
# M_SQRT2
# M_SQRT1_2
# M_TAU
FTEPP_MATHDEFS = false
#Enable indirect macro expansion. This only works in combination
#with '-fftepp' and is currently not included by '-std=fteqcc'.
#Enabling this behavior will allow the preprocessor to operate more
#like the standard C preprocessor in that it will allow arguments
#of macros which are macro-expanded to be substituted into the
#definition of the macro. As an example:
#
# #define STR1(x) #x
# #define STR2(x) STR1(x)
# #define THE_ANSWER 42
# #define THE_ANSWER_STR STR2(THE_ANSWER) /* "42" */
#
#With this enabled, an expansion of THE_ANSWER_STR will yield
#the string "42". With this disabled an expansion of THE_ANSWER_STR
#will yield "THE_ANSWER"
FTEPP_INDIRECT_EXPANSION = false
#Allow switch cases to use non constant variables.
RELAXED_SWITCH = true
#Perform early out in logical AND and OR expressions. The final
#result will be either a 0 or a 1, see the next flag for more pos‐
#sibilities.
SHORT_LOGIC = true
#In many languages, logical expressions perform early out in a
#special way: If the left operand of an AND yeilds true, or the
#one of an OR yields false, the complete expression evaluates to
#the right side. Thus ‘true && 5’ evaluates to 5 rather than 1.
PERL_LOGIC = false
#Enable the underscore intrinsic: Using ‘_("A string constant")’
#will cause the string immediate to get a name with a "dotrans‐
#late_" prefix. The darkplaces engine recognizes these and trans‐
#lates them in a way similar to how gettext works.
TRANSLATABLE_STRINGS = true
#Don't implicitly convert initialized variables to constants. With
#this flag, the const keyword is required to make a constant.
INITIALIZED_NONCONSTANTS = false
#If this flag is not set, (and it is set by default in the qcc and
#fteqcc standards), assigning function pointers of mismatching
#signatures will result in an error rather than a warning.
ASSIGN_FUNCTION_TYPES = true
#Produce a linenumber file along with the output .dat file.
LNO = false
#Use C's operator precedence for ternary expressions. Unless your
#code depends on fteqcc-compatible behaviour, you'll want to use
#this option.
CORRECT_TERNARY = true
#Normally vectors generate 4 defs, once for the vector, and once
#for its components with _x, _y, _z suffixes. This option prevents
#components from being listed.
SINGLE_VECTOR_DEFS = true
#Most QC compilers translate ‘if(a_vector)’ directly as an IF on
#the vector, which means only the x-component is checked. This
#option causes vectors to be cast to actual booleans via a NOT_V
#and, if necessary, a NOT_F chained to it.
#
# if (a_vector) // becomes
# if not(!a_vector)
# // likewise
# a = a_vector && a_float // becomes
# a = !!a_vector && a_float
CORRECT_LOGIC = true
#An empty string is considered to be true everywhere. The NOT_S
#instruction usually considers an empty string to be false, this
#option effectively causes the unary not in strings to use NOT_F
#instead.
TRUE_EMPTY_STRINGS = false
#An empty string is considered to be false everywhere. This means
#loops and if statements which depend on a string will perform a
#NOT_S instruction on the string before using it.
FALSE_EMPTY_STRINGS = true
#Enable utf8 characters. This allows utf-8 encoded character con‐
#stants, and escape sequence codepoints in the valid utf-8 range.
#Effectively enabling escape sequences like '\{x2211}'.
UTF8 = true
#When a warning is treated as an error, and this option is set
#(which it is by default), it is like any other error and will
#cause compilation to stop. When disabling this flag by using
#-fno-bail-on-werror, compilation will continue until the end, but
#no output is generated. Instead the first such error message's
#context is shown.
BAIL_ON_WERROR = false
#Allow loops to be labeled, and allow 'break' and 'continue' to
#take an optional label to decide which loop to actually jump out
#of or continue.
#
# for :outer (i = 0; i < n; ++i) {
# while (inner) {
# ...;
# if (something)
# continue outer;
# }
# }
LOOP_LABELS = true
#Adds a global named 'nil' which is of no type and can be assigned
#to anything. No typechecking will be performed on assignments.
#Assigning to it is forbidden, using it in any other kind of
#expression is also not allowed.
#
#Note that this is different from fteqcc's __NULL__: In fteqcc,
#__NULL__ maps to the integer written as '0i'. It's can be
#assigned to function pointers and integers, but it'll error about
#invalid instructions when assigning it to floats without enabling
#the FTE instruction set. There's also a bug which allows it to be
#assigned to vectors, for which the source will be the global at
#offset 0, meaning the vector's y and z components will contain
#the OFS_RETURN x and y components.#
#
#In that gmqcc the nil global is an actual global filled with
#zeroes, and can be assigned to anything including fields, vectors
#or function pointers, and they end up becoming zeroed.
UNTYPED_NIL = true
#Various effects, usually to weaken some conditions.
# with -funtyped-nil
# Allow local variables named ‘nil’. (This will not
# allow declaring a global of that name.)
PERMISSIVE = false
#Allow variadic parameters to be accessed by QC code. This can be
#achieved via the '...' function, which takes a parameter index
#and a typename.
#
#Example:
#
# void vafunc(string...count) {
# float i;
# for (i = 0; i < count; ++i)
# print(...(i, string), "\n");
# }
VARIADIC_ARGS = true
#Most Quake VMs, including the one from FTEQW or up till recently
#Darkplaces, do not cope well with vector instructions with over‐
#lapping input and output. This option will avoid producing such
#code.
LEGACY_VECTOR_MATHS = false
#Usually builtin-numbers are just immediate constants. With this
#flag expressions can be used, as long as they are compile-time
#constant.
#
#Example:
#
# void printA() = #1; // the usual way
# void printB() = #2-1; // with a constant expression
EXPRESSIONS_FOR_BUILTINS = true
#Enabiling this option will allow assigning values or expressions
#to the return keyword as if it were a local variable of the same
#type as the function's signature's return type.
#
#Example:
#
# float bar() { return 1024; }
# float fun() {
# return = bar();
# return; // returns value of bar (this can be omitted)
# }
RETURN_ASSIGNMENTS = true
#When passing on varargs to a different functions, this turns some
#static error cases into warnings. Like when the caller's varargs
#are restricted to a different type than the callee's parameter.
#Or a list of unrestricted varargs is passed into restricted
#varargs.
UNSAFE_VARARGS = false
#Always use STORE_F, LOAD_F, STOREP_F when accessing scalar variables.
#This is somewhat incorrect assembly instruction use, but in all engines
#they do exactly the same. This makes disassembly output harder to read,
#breaks decompilers, but causes the output file to be better compressible.
TYPELESS_STORES = false
#In commutative instructions, always put the lower-numbered operand first.
#This shaves off 1 byte of entropy from all these instructions, reducing
#compressed size of the output file.
SORT_OPERANDS = false
#Emulate OP_STATE operations in code rather than using the instruction.
#The desired fps can be set via -state-fps=NUM, defaults to 10.
EMULATE_STATE = false
#Turn on arithmetic exception tests in the compiler. In constant expressions
#which trigger exceptions like division by zero, overflow, underflow, etc,
#the following flag will produce diagnostics for what triggered that
#exception.
ARITHMETIC_EXCEPTIONS = false
#Split vector-literals which are only used dirctly as function parameters
#into 3 floats stored separately to reduce the number of globals at the
#expense of additional instructions.
SPLIT_VECTOR_PARAMETERS = false
#Force all expressions to be "eraseable" which permits the compiler
#to remove unused functions, variables and statements. This is
#equivlant to putting [[eraseable]] on all definitions. This is
#dangerous as it breaks auto cvars, definitions for functions the
#engine may be looking for and translatable strings. Instead, you
#can mark a definition with [[noerase]] to prevent this from happening.
DEFAULT_ERASEABLE = false
[warnings]
#Generate a warning about variables which are declared but never
#used. This can be avoided by adding the ‘noref’ keyword in front
#of the variable declaration. Additionally a complete section of
#unreferenced variables can be opened using ‘#pragma noref 1’ and
#closed via ‘#pragma noref 0’.
UNUSED_VARIABLE = false
#Generate a warning about vector variables which are declared but
#components of it are never used.
UNUSED_COMPONENT = false
#Generate a warning if it is possible that a variable can be used
#without prior initialization. Note that this warning is not nec‐
#essarily reliable if the initialization happens only under cer‐
#tain conditions. The other way is not possible: that the warning
#is not generated when uninitialized use is possible.
USED_UNINITIALIZED = false
#Generate an error when an unrecognized control sequence in a
#string is used. Meaning: when there's a character after a back‐
#slash in a string which has no known meaning.
UNKNOWN_CONTROL_SEQUENCE = false
#Warn when using special extensions which are not part of the
#selected standard.
EXTENSIONS = false
#Generally QC compilers ignore redeclaration of fields. Here you
#can optionally enable a warning.
FIELD_REDECLARED = false
#Functions which aren't of type void will warn if it possible to
#reach the end without returning an actual value.
MISSING_RETURN_VALUES = false
#Warn about a function call with an invalid number of parameters.
INVALID_PARAMETER_COUNT = false
#Warn when a locally declared variable shadows variable.
LOCAL_SHADOWS = false
#Warn when the initialization of a local variable turns the vari‐
#able into a constant. This is default behaviour unless
#-finitialized-nonconstants is used.
LOCAL_CONSTANTS = false
#There are only 2 known global variables of type void:
#‘end_sys_globals’ and ‘end_sys_fields’. Any other void-variable
#will warn.
VOID_VARIABLES = false
#A global function which is not declared with the ‘var’ keyword is
#expected to have an implementing body, or be a builtin. If nei‐
#ther is the case, it implicitly becomes a function pointer, and a
#warning is generated.
IMPLICIT_FUNCTION_POINTER = false
#Currently there's no way for an in QC implemented function to
#access variadic parameters. If a function with variadic parame‐
#ters has an implementing body, a warning will be generated.
VARIADIC_FUNCTION = false
#Generate warnings about ‘$frame’ commands, for instance about
#duplicate frame definitions.
FRAME_MACROS = false
#Warn about statements which have no effect. Any expression which
#does not call a function or assigns a variable.
EFFECTLESS_STATEMENT = false
#The ‘end_sys_fields’ variable is supposed to be a global variable
#of type void. It is also recognized as a field but this will
#generate a warning.
END_SYS_FIELDS = false
#Warn when assigning to a function pointer with an unmatching sig‐
#nature. This usually happens in cases like assigning the null
#function to an entity's .think function pointer.
ASSIGN_FUNCTION_TYPES = false
#Show warnings created using the preprocessor's '#warning' directive
CPP = true
#Warn if there's a preprocessor #if spanning across several files.
MULTIFILE_IF = true
#Warn about multiple declarations of globals. This seems pretty
#common in QC code so you probably do not want this unless you
#want to clean up your code.
DOUBLE_DECLARATION = false
#The combination of const and var is not illegal, however differ‐
#ent compilers may handle them differently. We were told, the
#intention is to create a function-pointer which is not assigna‐
#ble. This is exactly how we interpret it. However for this
#interpretation the ‘var’ keyword is considered superfluous (and
#philosophically wrong), so it is possible to generate a warning
#about this.
CONST_VAR = true
#Warn about multibyte character constants, they do not work right
#now.
MULTIBYTE_CHARACTER = false
#Warn if a ternary expression which contains a comma operator is
#used without enclosing parenthesis, since this is most likely not
#what you actually want. We recommend the -fcorrect-ternary
#option.
TERNARY_PRECEDENCE = false
#Warn when encountering an unrecognized ‘#pragma’ line.
UNKNOWN_PRAGMAS = true
#Warn about unreachable code. That is: code after a return state‐
#ment, or code after a call to a function marked as 'noreturn'.
UNREACHABLE_CODE = true
#Enable some warnings added in order to help debugging in the com‐
#piler. You won't need this.
DEBUG = false
#Warn on an unknown attribute. The warning will inlclude only the
#first token inside the enclosing attribute-brackets. This may
#change when the actual attribute syntax is better defined.
UNKNOWN_ATTRIBUTE = true
#Warn when using reserved names such as ‘nil’.
RESERVED_NAMES = true
#Warn about global constants (using the ‘const’ keyword) with no
#assigned value.
UNINITIALIZED_CONSTANT = true
#Warn about global variables with no initializing value. This is
#off by default, and is added mostly to help find null-values
#which are supposed to be replaced by the untyped 'nil' constant.
UNINITIALIZED_GLOBAL = true
#Warn when a variables is redeclared with a different qualifier.
#For example when redeclaring a variable as 'var' which was previ‐
#ously marked 'const'.
DIFFERENT_QUALIFIERS = true
#Similar to the above but for attributes like ‘[[noreturn]]’.
DIFFERENT_ATTRIBUTES = true
#Warn when a function is marked with the attribute "[[depre‐
#cated]]". This flag enables a warning on calls to functions
#marked as such.
DEPRECATED = true
#Warn about possible mistakes caused by missing or wrong parenthe‐
#sis, like an assignment in an 'if' condition when there's no
#additional set of parens around the assignment.
PARENTHESIS = true
#When passing variadic parameters via ...(N) it can happen that
#incompatible types are passed to functions. This enables several
#warnings when static typechecking cannot guarantee consistent
#behavior.
UNSAFE_TYPES = true
#When compiling original id1 QC there is a definition for `break`
#which conflicts with the 'break' keyword in GMQCC. Enabling this
#print a warning when the definition occurs. The definition is
#ignored for both cases.
BREAKDEF = true
#When compiling original QuakeWorld QC there are instances where
#code overwrites constants. This is considered an error, however
#for QuakeWorld to compile it needs to be treated as a warning
#instead, as such this warning only works when -std=qcc.
CONST_OVERWRITE = true
#Warn about the use of preprocessor directives inside macros.
DIRECTIVE_INMACRO = true
#When using a function that is not explicitly defined, the compiler
#will search its intrinsics table for something that matches that
#function name by appending "__builtin_" to it. This behaviour may
#be unexpected, so enabling this will produce a diagnostic when
#such a function is resolved to a builtin.
BUILTINS = true
#When comparing an inexact value such as `1.0/3.0' the result is
#pathologically wrong. Enabling this will trigger a compiler warning
#on such expressions.
INEXACT_COMPARES = true
[optimizations]
#Some general peephole optimizations. For instance the code `a = b
#+ c` typically generates 2 instructions, an ADD and a STORE. This
#optimization removes the STORE and lets the ADD write directly
#into A.
PEEPHOLE = true
#Tail recursive function calls will be turned into loops to avoid
#the overhead of the CALL and RETURN instructions.
TAIL_RECURSION = true
#Make all functions which use neither local arrays nor have locals
#which are seen as possibly uninitialized use the same local sec‐
#tion. This should be pretty safe compared to other compilers
#which do not check for uninitialized values properly. The problem
#is that there's QC code out there which really doesn't initialize
#some values. This is fine as long as this kind of optimization
#isn't used, but also, only as long as the functions cannot be
#called in a recursive manner. Since it's hard to know whether or
#not an array is actually fully initialized, especially when ini‐
#tializing it via a loop, we assume functions with arrays to be
#too dangerous for this optimization.
OVERLAP_LOCALS = true
#This promotes locally declared variables to "temps". Meaning when
#a temporary result of an operation has to be stored somewhere, a
#local variable which is not 'alive' at that point can be used to
#keep the result. This can reduce the size of the global section.
#This will not have declared variables overlap, even if it was
#possible.
LOCAL_TEMPS = true
#Causes temporary values which do not need to be backed up on a
#CALL to not be stored in the function's locals-area. With this, a
#CALL to a function may need to back up fewer values and thus exe‐
#cute faster.
GLOBAL_TEMPS = true
#Don't generate defs for immediate values or even declared con‐
#stants. Meaning variables which are implicitly constant or qual‐
#ified as such using the 'const' keyword.
STRIP_CONSTANT_NAMES = true
#Aggressively reuse strings in the string section. When a string
#should be added which is the trailing substring of an already
#existing string, the existing string's tail will be returned
#instead of the new string being added.
#
#For example the following code will only generate 1 string:
#
# print("Hello you!\n");
# print("you!\n"); // trailing substring of "Hello you!\n"
#
#There's however one limitation. Strings are still processed in
#order, so if the above print statements were reversed, this opti‐
#mization would not happen.
OVERLAP_STRINGS = true
#By default, all parameters of a CALL are copied into the parame‐
#ter-globals right before the CALL instructions. This is the easi‐
#est and safest way to translate calls, but also adds a lot of
#unnecessary copying and unnecessary temporary values. This opti‐
#mization makes operations which are used as a parameter evaluate
#directly into the parameter-global if that is possible, which is
#when there's no other CALL instruction in between.
CALL_STORES = true
#Usually an empty RETURN instruction is added to the end of a void
#typed function. However, additionally after every function a DONE
#instruction is added for several reasons. (For example the qcvm's
#disassemble switch uses it to know when the function ends.). This
#optimization replaces that last RETURN with DONE rather than
#adding the DONE additionally.
VOID_RETURN = true
#Because traditional QC code doesn't allow you to access individ‐
#ual vector components of a computed vector without storing it in
#a local first, sometimes people multiply it by a constant like
#‘'0 1 0'’ to get, in this case, the y component of a vector. This
#optimization will turn such a multiplication into a direct compo‐
#nent access. If the factor is anything other than 1, a float-mul‐
#tiplication will be added, which is still faster than a vector
#multiplication.
VECTOR_COMPONENTS = true
#For constant expressions that result in dead code (such as a
#branch whos condition can be evaluated at compile-time), this
#will eliminate the branch and else body (if present) to produce
#more optimal code.
CONST_FOLD_DCE = true
#For constant expressions we can fold them to immediate values.
#this option cannot be disabled or enabled, the compiler forces
#it to stay enabled by ignoring the value entierly. There are
#plans to enable some level of constant fold disabling, but right
#now the language can't function without it. This is merley here
#as an exercise to the reader.
CONST_FOLD = true