-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChainWalk_20.py
178 lines (140 loc) · 4.33 KB
/
ChainWalk_20.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gym
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import time
class ChainWalk():
def __init__(self,num):
self.start_state = 0
self.state = 0
self.num_states = num
# 0 = left, 1 = right
self.action_space = [0 ,1]
self.terminal_state = [0,self.num_states-1]
def move(self,a):
success = self.RandAction()
# print('old state:',self.state,'action:',a,'success:',success)
if (a == 0):
if (self.state == self.terminal_state[0] and success):
self.state = 0
elif (success):
self.state -= 1
elif (self.state == self.terminal_state[1]):
self.state = self.terminal_state[1]
else:
self.state +=1
else:
if (self.state == self.terminal_state[1] and success):
self.state = self.terminal_state[1]
elif (success):
self.state += 1
elif (self.state == self.terminal_state[0]):
self.state = self.terminal_state[0]
else:
self.state -=1
if (self.state == self.terminal_state[0] or self.state == self.terminal_state[1]):
reward =1
else:
reward =0
# print('new state:',self.state,'reward:',reward)
return self.state,reward
def RandAction(self):
p = 0.9
n = np.random.randint(100)
if (n<0.9*100):
s = True
else:
s = False
return s
def reset(self):
self.state = np.random.randint(len(self.action_space))
# self.state = 0
# print('start state:',self.state)
st = 20
c = ChainWalk(st)
# c.reset()
step = 5000
count = 0
samp =5
D = np.zeros(step*3*samp).reshape(samp*3,step)
for j in range(samp):
c.reset()
steps = []
rew = []
action = []
steps.append(c.state)
for i in range(step-1):
a = np.random.randint(len(c.action_space))
action.append(a)
snew,r = c.move(a)
steps.append(snew)
rew.append(r)
D[count,:] = steps
D[count+1,0:step-1] = rew
D[count+2,0:step-1] = action
count += 3
# np.save(r'/home/jack/Documents/LiClipse Workspace/RL/ChainWalk_data/D_sample.npy',D)
def plotChain(w,k):
plt.figure(k)
l = []
r = []
for i in range(c.num_states):
s = i
phi = np.matrix([1,s,s**2,s**3,s**4,1,s,s**2,s**3,s**4])
l.append(float(phi[0,0:k/2]*w[0:k/2,0]))
plt.plot(i,phi[0,0:k/2]*w[0:k/2,0],'xr')
r.append(float(phi[0,k/2:k]*w[k/2:k,0]))
plt.plot(i,phi[0,k/2:k]*w[k/2:k,0],'ob')
plt.plot(range(st),l,'r',label='left')
plt.plot(range(st),r,'b',label='right')
plt.legend()
def getPhi(s,a):
if a ==0:
phiNew = np.matrix([1,s,s**2,s**3,s**4,0,0,0,0,0])
if a ==1:
phiNew = np.matrix([0,0,0,0,0,1,s,s**2,s**3,s**4])
return phiNew
def LSTDQ(D,k,phi,gamma,w):
A = np.zeros(k*k).reshape(k,k)
b = np.zeros(k)
count = 0
for ep in range(samp):
for st in range(step-1):
s = D[count,st]
r = D[count+1,st]
a = int(D[count+2,st])
snew = D[0,st+1]
# anew = 0
anew = np.argmax([getPhi(snew,0)[0,0:k/2]*w[0:k/2,0],getPhi(snew,1)[0,k/2:k]*w[k/2:k,0]])
A = A+ np.transpose(getPhi(s,a))*(getPhi(s,a)-gamma*getPhi(snew,anew))
b = b+ getPhi(s,a)*r
count += 3
w_pi = np.linalg.inv(A)*np.transpose(b)
w = w_pi
return w_pi
def LSPI(D,k,phi,gamma,epsilon,w_null):
w_tick = w_null
count = 1
c2 = 0
while True:
# for i in range(7):
print('iter:',count)
w = w_tick
w_tick = LSTDQ(D[0:k/2,:],k,phi,gamma,w)
plotChain(w_tick,count)
print(w_tick)
c2 +=3
count +=1
if (np.linalg.norm(w_tick-w)<epsilon):
break
plt.show()
return w_tick
k = 10
w_null = np.matrix(np.zeros(k)).T
epsilon = 1e-3
gamma = 0.9
phi = np.matrix(np.zeros(k))
w = LSPI(D,k,phi,gamma,epsilon,w_null)
# wopt = np.concatenate((w[0:3,0].T,w[3:6,0].T),axis=0)
# print(D)
# print(w)