Persian Named Entity Recognition Models Comparison
This repo is a comparison between bert-fa-zwnj and xlm-roberta . These models are fine-tuned on either ParsNer or SemEval for NER task.
There was four popular datasets for NER task in Persian, and Hooshvare Team introduced another dataset that is a mixture of three of them:
ParsNer tags:
DAT: Date
EVE: Event
FAC: Facility
LOC: Location
MON: Money
ORG: Organization
PCT: Percent
PER: Person
PRO: Product
TIM: Time
SemEval tags:
PER: Names of people
LOC: Location or physical facilities
CORP: Corporations and businesses
GRP: All other groups
PROD: Consumer products
CW: Titles of creative works like movie, song,
and book title
Statistics:
Dataset
train
validation set
test set
ParsNer
29,133
5,142
6,049
SemEval - Fa
15,300
800
165,702
Results' comparison on ParsNer dataset
These three models are fined-tuned on ParsNer train set and results are on ParsNer test set.
Pretrained model : xlm-roberta-large
-
precision
recall
f1-score
DAT
0.76
0.81
0.78
EVE
0.86
0.97
0.91
FAC
0.84
0.99
0.90
LOC
0.95
0.94
0.95
MON
0.92
0.93
0.93
ORG
0.90
0.94
0.92
PCT
0.87
0.89
0.88
PER
0.97
0.98
0.97
PRO
0.87
0.98
0.92
TIM
0.82
0.91
0.86
micro
0.93
0.95
0.94
macro
0.88
0.93
0.90
weighted
0.93
0.95
0.94
Pretrained model : xlm-roberta-base
-
precision
recall
f1-score
DAT
0.60
0.73
0.66
EVE
0.65
0.87
0.74
FAC
0.71
0.95
0.81
LOC
0.90
0.88
0.89
MON
0.85
0.86
0.85
ORG
0.81
0.89
0.85
PCT
0.79
0.87
0.83
PER
0.95
0.96
0.96
PRO
0.74
0.89
0.81
TIM
0.35
0.17
0.23
micro
0.86
0.90
0.88
macro
0.73
0.81
0.76
weighted
0.86
0.90
0.88
Pretrained model : HooshvareLab/bert-fa-zwnj-base
-
precision
recall
f1-score
DAT
0.71
0.75
0.73
EVE
0.78
0.92
0.84
FAC
0.78
0.91
0.84
LOC
0.92
0.93
0.92
MON
0.83
0.82
0.82
ORG
0.87
0.90
0.88
PCT
0.90
0.88
0.89
PER
0.95
0.95
0.95
PRO
0.84
0.95
0.89
TIM
0.66
0.43
0.52
micro
0.89
0.92
0.90
macro
0.82
0.84
0.83
weighted
0.89
0.92
0.90
Entity comparison (f1-score)
Entities
xlm-roberta-large
xlm-roberta-base
bert-fa-zwnj-base
DAT
0.78
0.66
0.73
EVE
0.91
0.74
0.84
FAC
0.90
0.81
0.84
LOC
0.95
0.89
0.92
MON
0.93
0.85
0.82
ORG
0.92
0.85
0.88
PCT
0.88
0.83
0.89
PER
0.97
0.96
0.95
PRO
0.92
0.81
0.89
TIM
0.86
0.23
0.52
-
precision
recall
f1-score
xlm-roberta-large
0.93
0.95
0.94
xlm-roberta-base
0.86
0.90
0.88
bert-fa-zwnj-base
0.89
0.92
0.90
Results' comparison on SemEval dataset
These two models are fined-tuned on SemEval train set and results are on SemEval test set.
Pretrained model : xlm-roberta-large
-
precision
recall
f1-score
CORP
0.56
0.56
0.56
CW
0.41
0.54
0.46
GRP
0.58
0.56
0.57
LOC
0.65
0.65
0.65
PER
0.70
0.72
0.71
PROD
0.60
0.61
0.60
micro
0.59
0.62
0.60
macro
0.58
0.61
0.59
weighted
0.60
0.62
0.61
Pretrained model : bert-fa-zwnj-base
-
precision
recall
f1-score
CORP
0.51
0.56
0.53
CW
0.22
0.40
0.28
GRP
0.50
0.47
0.48
LOC
0.52
0.49
0.51
PER
0.56
0.64
0.60
PROD
0.48
0.47
0.47
micro
0.45
0.51
0.48
macro
0.46
0.51
0.48
weighted
0.47
0.51
0.49
-
precision
recall
f1-score
xlm-roberta-large
0.60
0.62
0.61
bert-fa-zwnj-base
0.47
0.51
0.49
Entity comparison (f1-score)
Entities
xlm-roberta-large
bert-fa-zwnj-base
CORP
0.56
0.53
CW
0.46
0.28
GRP
0.57
0.48
LOC
0.65
0.51
PER
0.71
0.60