-
Notifications
You must be signed in to change notification settings - Fork 1
/
HEFT.m
347 lines (255 loc) · 10.2 KB
/
HEFT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
(* ::Package:: *)
(* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ *)
(* :Title: HEFT *)
(*
This software is covered by the GNU General Public License 3.
Copyright (C) 2021-2023 Andreas Ekstedt
Copyright (C) 2021-2023 Philipp Schicho
Copyright (C) 2021-2023 Tuomas V.I. Tenkanen
*)
(* :Summary: Integrates out particles with that get large field-dependent masses *)
(* ------------------------------------------------------------------------ *)
(* ::Section::Closed:: *)
(*Help functions*)
(*
Trick to simplify tensors because Mathematica 13 sucks.
*)
SparseZero[s_,dims_] := Module[{},
If[Length[s]==0,
(*If there are no array elements, as if for example when no hard scalars have been defined,
we want to return an array with 0 elements; this makes it easier to avoid unnecessary if statements down the line*)
Return[SparseArray[{Table[1,{i,1,Length[dims]}]->0},dims]]
,
Return[SparseArray[s]];
];
];
(*
Trick to simplify tensors because Mathematica 13 sucks.
*)
HeavyTensor[s_,dims_] := Module[{},
If[SparseArrayQ[s]==False,
(*If there are no array elements, as if for example when no hard scalars have been defined,
we want to return an array with 0 elements; this makes it easier to avoid unnecessary if statements down the line*)
Return[SparseArray[{Table[1,{i,1,Length[dims]}]->0},dims]]
,
Return[SparseArray[s]];
];
];
(* ::Section::Closed:: *)
(*Definition of model*)
(*
Prepares the effective semi-soft/supersoft theory by creating hard and soft coupling tensors
*)
PrepareHET[HardScalarI_,HardSVectorI_]:=Module[{ListScalar=HardScalarI,ListVector=HardSVectorI},
If[ValueQ[gvvvEP]==False,
Print["You have to define the model, see UseUltraSoftTheory[], UseSoftTheory[], or DefineNewTensorsUS[]"];
Print["Please also define the relevant VEVs with DefineVEVS[] before calculating the HET theory"];
Return[];
];
(*These particles will be integrated out*)
HeavyScalarsHET=Transpose[List@ListScalar]; (*The list of all heavy scalars*)
HeavyVectorsHET=Transpose[List@ListVector]; (*The list of all heavy scalars*)
TotScalar=Table[{i},{i,1,nsEP}];
TotVector=Table[{i},{i,1,nvEP}];
(*These are the particles that should not be integrated out*)
If[Length[HeavyScalarsHET]<1,
LightScalarHET=TotScalar[[;;,1]];
nHETS=1; (*Trick to avoid an exessive amount of if statements*)
nHETSlight=nsEP;
,
LightScalarHET=Delete[TotScalar,HeavyScalarsHET][[;;,1]];
nHETS=Length[HeavyScalarsHET];
nHETSlight=nsEP-nHETS;
HeavyScalarsHET=HeavyScalarsHET[[;;,1]];
];
If[Length[HeavyVectorsHET]<1,
LightVectorHET=TotVector[[;;,1]];
nHETV=1;(*Trick to avoid an exessive amount of if statements*)
nHETVlight=nvEP;
,
LightVectorHET=Delete[TotVector,HeavyVectorsHET][[;;,1]];
nHETV=Length[HeavyVectorsHET];
nHETVlight=nvEP-nHETV;
HeavyVectorsHET=HeavyVectorsHET[[;;,1]];
];
If[nHETVlight<1,
nHETVlight=1;
LightVectorHET={};
];(*Trick to avoid errors in situations where all vector bosons are integrated out*)
(*We now extract masses for the hard particles*)
\[Mu]ijHET=Table[\[Mu]ij\[Phi][[a,b]],{a,HeavyScalarsHET},{b,HeavyScalarsHET}]//SparseZero[#,{nHETS,nHETS}]&;
\[Mu]abHET=Table[\[Mu]ab\[Phi][[a,b]],{a,HeavyVectorsHET},{b,HeavyVectorsHET}]//SparseZero[#,{nHETV,nHETV}]&;
(*Defining couplings between hard and soft particles*)
(*Convention: Capital letters are hard, otherwise a soft particle*)
(*Contraction with coupling-tensors and masses*)
(*We now have to integrate out hard particles in each topology*)
(*We treat off-diagonal masses perturbatively, so only the diagonal elements are used here*)
aS=Table[\[Mu]ijHET[[i,i]],{i,1,nHETS}]//SparseArray;
av=Table[\[Mu]abHET[[i,i]],{i,1,nHETV}]//SparseArray;
(*For the effective potential we can loop over all particles (both light and heavy) if we set the light masses to zero*)
avF=Table[0,{i,nvEP}]//SparseArray;
asF=Table[0,{i,nsEP}]//SparseArray;
If[Length[HeavyVectorsHET]>0,
avF[[HeavyVectorsHET]]=av;
];
If[Length[HeavyScalarsHET]>0,
asF[[HeavyScalarsHET]]=aS;
];
Return[]
];
(* ::Section::Closed:: *)
(*Effective potential*)
(*
Calculates the tree-level effective potential.
*)
CalculateLOPotentialHET[]:=Module[{V1,V2,V3},
If[verbose==True,Print["Calculating the Tree-Level Effective Potential"]];
V1=\[Lambda]4EP . \[Phi]Vev . \[Phi]Vev . \[Phi]Vev . \[Phi]Vev;
V2=\[Mu]ijEP . \[Phi]Vev . \[Phi]Vev;
V3=\[Lambda]3EP . \[Phi]Vev . \[Phi]Vev . \[Phi]Vev;
VHETLO=1/4! V1+V2/2!+V3/3!;
];
(*
Calculates the one-loop effective potential.
*)
CalculateNLOPotentialHET[]:=Module[{V1,V2,ALog},
If[verbose==True,Print["Calculating the 1-Loop Effective Potential"]];
(*Log integral*)
ALog[x_]:=-(x^(3/2)/(12 \[Pi]));
V1=Sum[ALog[\[Mu]ijHET[[i,i]]],{i,1,nHETS}];
V2=2*Sum[ALog[\[Mu]abHET[[i,i]]],{i,1,nHETV}];
VHETNLO=V1+V2;
];
(*
Calculates the two-loop effective potential.
*)
CalculateNNLOPotentialHET[]:=Module[{fvvv,f\[Eta]\[Eta]v,fssv,fvvs,fsss,fss,fvs,fvv,ss,sss,vs,vvs,ssv,vv,vvv,ggv,
Vss,Vsss,Vvs,Vvvs,Vssv,Vvvv,Vvv,V\[Eta]\[Eta]v,
\[Mu]ab\[Phi]Pert,\[Mu]ijPert,helpTens,V1,V2,AD},
If[verbose==True,Print["Calculating the 2-Loop Effective Potential"]];
(*Loading two-loop master integrals*)
{fvvv,f\[Eta]\[Eta]v,fssv,fvvs,fsss,fss,fvs,fvv}=TwoLoopFunctions[];
(*scalar-scalar bubble*)
ss=1/8 TensorProduct[\[Lambda]4\[Phi]];
Vss=Sum[ss[[j,j,k,k]]fss[asF[[j]],asF[[k]]],{j,nsEP},{k,nsEP}];
(*scalar-scalar-scalar sunset*)
sss=1/12 TensorProduct[\[Lambda]3\[Phi],\[Lambda]3\[Phi]];
Vsss=Sum[sss[[i,j,k,i,j,k]]fsss[asF[[i]],asF[[j]],asF[[k]]],{j,nsEP},{k,nsEP},{i,nsEP}];
(*scalar-vector bubble*)
vs=1/2 TensorProduct[gvss\[Phi],gvss\[Phi]];
Vvs=Sum[vs[[a,i,j,a,i,j]]fvs[asF[[i]],avF[[a]]],{a,nvEP},{j,nsEP},{i,nsEP}];
(*Vector-vector-scalar sunset diagrams*)
vvs=1/4 TensorProduct[Gvvs\[Phi],Gvvs\[Phi]];
Vvvs=Sum[vvs[[a,b,i,a,b,i]]fvvs[avF[[a]],avF[[b]],asF[[i]]],{a,nvEP},{b,nvEP},{i,nsEP}];
(*Scalar-Scalar-vector sunset diagrams*)
ssv=1/4 TensorProduct[gvss\[Phi],gvss\[Phi]];
Vssv=Sum[ssv[[a,i,j,a,i,j]]fssv[asF[[i]],asF[[j]],avF[[a]]],{a,nvEP},{j,nsEP},{i,nsEP}];
(*vector-vector-vector sunset diagrams*)
vvv=1/12 TensorProduct[gvvv\[Phi],gvvv\[Phi]];
Vvvv=Sum[vvv[[a,b,c,a,b,c]]fvvv[avF[[a]],avF[[b]],avF[[c]]],{a,nvEP},{b,nvEP},{c,nvEP}];
(*vector-vector bubble diagrams*)
vv=1/4 TensorProduct[gvvv\[Phi],gvvv\[Phi]];
Vvv=Sum[vv[[a,b,c,a,b,c]]fvv[avF[[a]],avF[[b]]],{a,nvEP},{b,nvEP},{c,nvEP}];
(*ghost diagrams*)
ggv=1/4 TensorProduct[gvvv\[Phi],gvvv\[Phi]];
V\[Eta]\[Eta]v=Sum[ggv[[a,b,c,a,b,c]]f\[Eta]\[Eta]v[0,0,avF[[b]]],{a,nvEP},{b,nvEP},{c,nvEP}];
(*We now treat off-diagonal masses as small*)
\[Mu]ijPert=\[Mu]ij\[Phi];
\[Mu]ijPert[[LightScalarHET,LightScalarHET]]=0;
\[Mu]ijPert=ArrayRules[\[Mu]ijPert]/.({x_Integer,y_Integer}->a_)/;Equal[x,y]->{x,y}->0//SparseArray[#,{nsEP,nsEP}]&;
\[Mu]ab\[Phi]Pert=\[Mu]ab\[Phi];
\[Mu]ab\[Phi]Pert[[LightVectorHET,LightVectorHET]]=0;
\[Mu]ab\[Phi]Pert=ArrayRules[\[Mu]ab\[Phi]Pert]/.({x_Integer,y_Integer}->a_)/;Equal[x,y]->{x,y}->0//SparseArray[#,{nvEP,nvEP}]&;
(*One-loop integrals*)
AD[x_,y_]:=-(1/(4 \[Pi]))( Sqrt[x]-Sqrt[y])/(y-x);
AD[0,0]:=0;
AD[x_,x_]:=(1/(8 \[Pi]))/Sqrt[x];
(*Scalar contribution*)
helpTens=Table[AD[a,b],{a,asF},{b,asF}]//SparseArray;
helpTens=TensorProduct[helpTens,\[Mu]ijPert]//SparseArray//DiagonalTensor2[#,1,3]&;
V1=Tr[helpTens . \[Mu]ijPert];
(*Vector contribution*)
helpTens=Table[AD[a,b],{a,avF},{b,avF}]//SparseArray;
helpTens=TensorProduct[helpTens,\[Mu]ab\[Phi]Pert]//SparseArray//DiagonalTensor2[#,1,3]&;
V2=2*Tr[helpTens . \[Mu]ab\[Phi]Pert];
(*Potential*)
(*
*)
VHETNNLO= Vss+Vsss+Vvs+ Vvvs+ Vssv+ Vvvv+ Vvv+ V\[Eta]\[Eta]v+V1+V2;
];
(*
Prints the effective potential.
*)
PrintActionHET[optP_]:=Module[{opt=optP},
EffActionPrint=Switch[opt,"LO",VTotHET[[1]]+VTotHET[[2]],"NLO",VTotHET[[3]]];
(*Printing Result*)
OutputFormatDR[EffActionPrint]
];
(*
Calculates the effective potential.
*)
CalculatePotentialHET[]:=Module[{},
CalculateLOPotentialHET[];
CalculateNLOPotentialHET[];
CalculateNNLOPotentialHET[];
VTotHET={VHETLO,VHETNLO,VHETNNLO};
];
(* ::Section:: *)
(*Scalar mass*)
(*
Prints the effective potential.
*)
PrintScalarKineticHET[]:=Module[{},
ScalarSelfEnergyHET[];
(*Printing Result*)
Return[OutputFormatDR[ZSijHET]]
];
(*
Scalar self-energy in the effective theory.
*)
ScalarSelfEnergyHET[]:=Module[{LSV,LVV,LSS,\[Lambda]3IJi,gAIj,GABi,TensHelp,ContriSV,ContriVV,ContriSS},
If[verbose,Print["Calculating Scalar Self-Energy"]];
(*One-loop master integrals*)
{LSV,LVV,LSS}=OneLoopFunctions[];
(*Scalar-scalar bubble*)
\[Lambda]3IJi=\[Lambda]3\[Phi][[;;,;;,LightScalarHET]]//HeavyTensor[#,{nsEP,nsEP,nHETSlight}]&;
TensHelp=Table[LSS[i,a],{i,asF},{a,asF}]//SparseArray;
TensHelp=TensorProduct[TensHelp,\[Lambda]3IJi]//DiagonalTensor[#,2,3]&//DiagonalTensor[#,2,3]&;
ContriSS=1/2*Contract[\[Lambda]3IJi,TensHelp,{{1,4},{2,5}}]//SimplifySparse;
(*Scalar-vector bubble*)
gAIj=gvss\[Phi][[;;,LightScalarHET,;;]]//HeavyTensor[#,{nvEP,nHETSlight,nsEP}]&;
TensHelp=Table[LSV[i,a],{i,asF},{a,avF}]//SparseArray;
TensHelp=TensorProduct[TensHelp,gAIj]//DiagonalTensor[#,2,3]&//DiagonalTensor[#,2,4]&;
ContriSV=TensorContract[gAIj . TensHelp,{1,3}];
(*Vector-vector bubble*)
GABi=Gvvs\[Phi][[;;,;;,LightScalarHET]]//HeavyTensor[#,{nvEP,nvEP,nHETSlight}]&;
TensHelp=Table[LVV[i,a],{i,avF},{a,avF}]//SparseArray;
TensHelp=TensorProduct[TensHelp,GABi]//DiagonalTensor[#,2,3]&//DiagonalTensor[#,2,3]&;
ContriVV=1/2*Contract[GABi,TensHelp,{{1,4},{2,5}}]//SimplifySparse;
ZSijHET=(- ContriSV- ContriVV-ContriSS)/2;
];
(* ::Section:: *)
(*Scalar master integrals*)
OneLoopFunctions[]:=Module[{LSV,LVV,LSS,A},
(*One-loop bubble*)
A[0]=0;
A[x_]:=-(1/(4 \[Pi])) Sqrt[x];
(*scalar-vector 2-point*)
LSV[x_,y_]:=(8 (-A[x]+A[y]))/(3 (x-y));
LSV[x_,x_]:=-((4 A[x] )/(3 x));
LSV[x_,0]:=-((8 A[x] )/(3 x));
LSV[0,0]=0;
(*vector-vector 2-point*)
LVV[x_,y_]:=(2 ((5 x-y) y^2 A[x]+x^2 (x-5 y) A[y]) )/(3 x (x-y)^3 y) ;
LVV[x_,x_]:=(5 A[x] )/(12 x^2);
LVV[x_,0]:=0;
LVV[0,x_]:=LVV[x,0];
LVV[0,0]:=0;
(*Scalar-scalar 2-point*)
LSS[x_,y_]:=((x+3 y) A[x]-(3 x+y) A[y]) /(3 (x-y)^3);
LSS[x_,x_]:=A[x]/(24 x^2);
LSS[x_,0]:=A[x] /(24 x^2);
LSS[0,x_]:=LSS[x,0];
LSS[0,0]:=0;
Return[{LSV,LVV,LSS}];
]