-
Notifications
You must be signed in to change notification settings - Fork 1
/
DRalgo.m
757 lines (605 loc) · 31.1 KB
/
DRalgo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
(* ::Package:: *)
(* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ *)
(* :Title: DRalgo *)
(*
This software is covered by the GNU General Public License 3.
Copyright (C) 2021-2023 Andreas Ekstedt
Copyright (C) 2021-2023 Philipp Schicho
Copyright (C) 2021-2023 Tuomas V.I. Tenkanen
*)
(* :Summary: DRalgo is an algorithm that constructs
the effective high-temperature field theory for generic models. *)
(* ------------------------------------------------------------------------ *)
BeginPackage["DRalgo`"] (* digital history: at its early days in 2021, DRalgo was called FireStorm *)
Unprotect@Definition;
Definition[x_Symbol] /; StringMatchQ[Context[x], "Package`" ~~ ___] :=
StringReplace[ToString@FullDefinition[x],
(WordCharacter .. ~~ DigitCharacter ... ~~ "`") .. ~~ s_ :> s
];
Protect@Definition;
(*
Welcome banner: All credit for this part to GroupMath
*)
TexFor[text_]:=Style[text,{GrayLevel[0.3]}]
result={};
AppendTo[result,Row[{
TexFor["DRDRDRDRDRDRDRDRDRDRDRDRDRDR "],
TexFor["DRalgo"],
TexFor[" DRDRDRDRDRDRDRDRDRDRDRDRDRDRD"]}]];
AppendTo[result,Row[{"Version: "//TexFor,"1.21 (21-05-2024)"//TexFor}]];
AppendTo[result,Row[{"Authors: "//TexFor,
Hyperlink["Andreas Ekstedt","https://inspirehep.net/authors/1799400"],", "//TexFor,
Hyperlink["Philipp Schicho","https://inspirehep.net/authors/1639147"],", "//TexFor,
Hyperlink["Tuomas V.I. Tenkanen","https://inspirehep.net/authors/1507627"]//TexFor}
]];
AppendTo[result,Row[{"Reference: "//TexFor,
Hyperlink["2205.08815 [hep-ph]","https://arxiv.org/abs/2205.08815"]//TexFor}]];
AppendTo[result,Row[{"Repository link: "//TexFor,
Hyperlink[Mouseover[TexFor["github.com/DR-algo/DRalgo"],Style["github.com/DR-algo/DRalgo",Bold]],
"https://github.com/DR-algo/DRalgo"]}]];
AppendTo[result,Row[{"Existing model files: "//TexFor,
Hyperlink[Mouseover[TexFor["DRalgo/examples"],Style["DRalgo/examples",Bold]],
"https://github.com/DR-algo/DRalgo/tree/main/examples"]}]];
DRalgoLoad=Image[CompressedData["1:eJztXYlbFUe295t57/vee9/Me+8/eFEURERQQNllk0VREETFHfSKRAVlcd8Yo5mMW3DfcIuKu0aTKCouUTQzQaNcMQqKgoKiBFkTkKjvSOHxTHff9tJ3q3bu76uYpm8vp/rXXfU7VaeqOsYnR038jw4dOqT+O/wTNjUuQTPxD2///BP8Myh9qiYlcbx/Skrc7Pg/wo7lbf+93X5jhRUGo6io6IerVyFptVrceffOHbaz8FahBW2zgmHSxIk2//cJpEH9B+DOuLFj2c4hgwdb0DYrGKwc8Q8rR/zDyhH/sHLEP6wc8Q8rR/zDyhH/sHLEP6wc8Q8rR/zDyhFvePr0ac6pnDWZmfPnzk2bngL/hgQFfZCjR2WPck6e2vPV7i2bNn+1c9fXR4/9dP16TU2N5fLxEeL3338/cvhw5MBB7MlLJh8PTzweOfL28Ojr5a3rlJDAoBXLlldUVFguZx8J4BnC5yDDDqZZ6TPYKciRPqmbrd2Gdetfv35t2WyqEVfy8ubMnOXn4yt+qp0/6ejt7hEWHOIv+hUKNDh31IgR+nPEkr2trX0XW8/efUYMG7Zy+Ypr+dcs/QC4xuVLlyIGhEs+SaDm+4sXf/31Vzx4Qnw8PSC0XzDsHBT+/nQo63Zs23b3zp2GhgYoM+vq6kru3z+Xm5u5alWvHk4yrMELsHnTpvr6ess9CR5RV1s7PSlZ/oUHqUBPQV3Xx8X1h6tXX758+YaUdS7OzroeMmgPfb6vno49gGIg1xz55x53fv5ZUHbZ2XTGbQe7rrj94MEDPEuZ9n716pWPp5fEC5CSGh4WJt4fFRFZ/vixqZ8A5wAx7OzoSGsc0NXFxcXk6aXgNuhnPFEZR9qCAryau6sbbj9/9gx+LS8vX7dmLdRNlKbeLq7FRcWmfg7corS0lFYN8DUBZeynAN++bGePbg4uTs5sG6oSPFcZR7lnz9KHzza6d7WnZRoUm7t27qSGQW1YcPNm029NpnkM/AJEL5Qk+BzGjBwF1Tr+mrVlK/4UO3QY2zh86BAeoIyjoqIicYGWNGWK+Ego4qBKooeB/IsbMwaqMygwjfcYuMaJ48cx+04O3e/fu0d/bWlpATHMfvVw6w1lILz2VAYobgtCxvHWDx8+FBwDn9X4cXG65ATUXKBSjPQYOAU8gbWrV1NhwHTCtq1Z9LDGxsZF8xdAQfT2VZ885XbhP4XMKeaourp6kkbDDhsQGgY1lPiYjevX6yII0+KMjKamj7P0gw9k6qeTdWX8wL794uPBwRFfx8A2Vfgkq54/1/UrfLli26IjI6nIhBQzOKqqqqo9uVcH5s6aLfNyQk1NHVUZmK7dGz40tIeSAnoGGJmVPoMaHNDXr7KyUvG9OMSRw4clqenj6orb31+8qM+lJDkaMXw4VhmKjYQSDOSBwELwqlD7nc89h1ITUmhQP8kvXY2A9xOzZtvJ5suVqyT5AuGkz9UkOQr080OZYYipM9PTBVadOX2aHgAyA70DSNOSkgy5HT/IWLAQMwWuIuz5y6IMwaNwtO/2yy+/6HM1MUcgibvZ2eE70NzcrNhUkCtp01O6dOzE6D713UnxMU+fPqVNFlfy8hTfjhM8q3xmb9tWgIQEBrHmNXCRtm7e4tS9rZ0BJFzOyVN6XlDM0YXzFyjdx499baDNL168gO9FlzcExq/JzMTbDY8ZSv07NQI+HF2lGby0eZcvn8vNra2p1f+CYo5wD0vgXhkzA/8M+IioA27zztXavHGjepthQ/sFs4wE+QcY5YICjuA7hfJN8NBK7t83yr0EgEIAHCtd0hR8ZBlVzy2g0MAsgFv6oKSElXWGQMAR/U4xLf3sM2OYL8ShAwd1EcRSv4AA1Qny/B9/FOSim61dWkqqIRmhHEHVIBm94Orc0xRNAVT1QUbYRtfOXWgzbFhwiLoE+cULFyTft94urrRLqF2gHOm6vlGUgxiLM4Ry1Ka1B6q0tBRcWtyTMEFj9FubDsu++ELXMxw3eoyya1KOEhMSZGoH4+YFUHirUNDY6O3hyRqFKioqvPq4434WZcE/wGxU3SzRzjWo6FtaWhRcFjnqHxwiVgs0CVrUjQLwEdx69mLXnzh+Asg8/Emr1WIzBbh7rPeQc6xfu07mAfZ07KHsssiRZPsnTUsWLzZujhjg1QLdCHJI/NP2rCy8+7w5c0xxd+Ni8KAIZi1z2wVp5fIVyi6LHEFlLc+Ri5OzmTsRwO3FACcQFZxHxjY3N+OH//mSpdl794YEtsUAg+gCP11xn6bAY5VPXx89Ztx8fRC0U37/vn1mvnu7AK6Q+EHV1daCy2lgj3O7ODKFctCFx48e/XXp5zTCNnXadLPdXQF+/Mc/0NSrV4zZvyzJEX6z4s4FUygHMXJO5bCOY5p8PL1Alpvh7spAPRfJXmnFEHAEymHH9u1jR41mf0ZHRu7LzqaOrYmUA8XDhw/F7wZL4AkWFRWZ2gBl+P7iRVNxpGnjCFyVnTt2MFUg6IcF6QV1AWPKDMqBuoECd8OmNbaZT/Fw88YNNPLypUvFRcVZW7aCeNiyabOBhU9MVDS7bHhYf9wp2VcOTB3Yt9/P28fUykHQjS5OyVOnmtQAZah6/hwtDPTzpwZ3/qTj2tVrFF95VGzbEAk94xmAKVNPxnX4oERb64S4eJSykPgM+pIZqwUpPz9f2WU5HGsJr8GYkaNo7hImaBobG7VaLbyQbI9Je7UUg3aRs0S9zi9XrvrwJaTAIUdvWkMHDx04OHfW7KWffUZ1bNr091Hrxq2XjYKS+/dpexoQ1KObA/65dfMWZZflkyNdoDHMi+YvsLQ5EqCRTjQ5OzqCM6vsmuriCDBsSAyzrY+rq6VtkYBkk5pXH/fr164rvqbqOAIHAfPOoa/k1suF2QYKJ3Xa9Lmz54AE0jMeVRdUxxH4HcjRsaNHLW2OEOjLRA4cZKxrqoij0tLSs2fOXDh/AdUdCy/kCsv/9jd8hYw1dFEVHAE7I4fHist5xWrWdIB6B81bsWwZ/Qk0w5W8vJ9v327vNfnnqLam1tvdQ1Isbc/K+vD5Zgf62j0de7ChXuXl5eDiodnwVNs1ToR/jsCt0OW5Dx4UwWGoZPbevWjhX5d+XlZWRsdKsDR5UqL+F+Sfo4Xz5mPWMMQLE8g8SxsoxMuXL7FRCFzaIP8A8dtlb2ur/8ww/HNEX0txgmKQw0/pfO45sang3mIclFN3R/2vxj9H4Fz0Dwmlme3SsdPIdyOkIF04d97SNkpg3pw5Mq9Wemqq/pfin6M3rVEBoGmh9gEj58ycVXirEIQEevRQGFraQAm0tLRMHD9BkiB3V7d2tQupgiNJ4Hj5AaHKBxuaFFAIL1m8WEAQPOcHJSWCI8G5yM/Pb2xslLyOejkCycSMhA9KWfynGdDc3ExF3aEDBwUxQk+fPh09YiT71dG+m2TLiXo5Orj/AOb98aNHljZHJ6jvEDEgHMpt/KmmpkY8xdO9YmHHuno5onE4N2/csLQ5OgElHsavspIZQ6YXzJsnrq3Wr10nuIJ6OaLxbLBtaXPkUFFRQWe46u3ievnSpabfmjA+jQ5AgDJccLrqOALXj42Mu5KXh/nCOay4RXFRMSXCpnVmJ9ymzoU4HFdFHAERo2JHMDcQnPf4ceMwX6qYd7e8vFxycj+aQDZUV1fTs+rr62Oio1XB0fVr13UFRoLPrpYZd6F8o01b4rRr5048+MmTJzPT02muOedIZv6uTxMmWdq69qHg5k1B4BPKibKyMnbM2TNnBHPKBfr509nnQG/EDh0GqV1NFiYFjSoUBK+KJ7BSBcCT3bF9u6+XcMpTKMajIiKxH5MmOu0Mh9+RJn68ru8oMSHB0tYpB9SkEeED5SspTOGkRYVDjsADEndMtNVHDt1VPaUkOFB7d+8WhB9LJs7rozetI2TBMAe7rradbMKCQ2jPJkgmS1tnKED2gJeHYUU2rRPKQQ0FskEtuo6CfTXq8o/0wcrlKzBHoJGwcFCRfySAitoZ9EFdbS3OxOju6kanTVMvR7S9DtSspc0xFPuyszE7mzZsoIO81MuRWtq99URaSiqVB+BfTJ6UyKZ6Vi9Hny9Z2padLrbc9h/pidM5OQKPlaVePZyKi4rVy9HwmKFtXoMBk77ygB3btsno7VGxI1TBUU1NDXw1A/v3B8mdnpoKtQ/swXiGjAULLW2gctASG1OQfwAGUnb+pOPECRM456ixsTE0qB/NApg9NHoI/gniwdI2KoS2oICOhRHMcIVeUsK7ue655Qh8cJmiwMfTS6WNDKDcaNtC5qpVhw8dEmdw9oyZ/Jd18nGqu3d9ZWkDFYJOuYmhxceOHqVrJMUMjqqrq+Ofo21bs8RvF5rHYZCqPqivr0cu3Hq50BknGhoavv3mm6wtWy+cO89yxz9H8CKJG/BZ4nPchD6goxHBe5U/mH+O3rQuojRu9BgxRxyOP9ITOKrXw633B507VXDEUF5eDhLuSl4ez+P49AGd6Q40D7gV8m3CKuKIgQ7/53A87AcBBGELCU3g9+maCVx1HO3Yvh3zJQ7p5BzPnz2T6XUVjM1EqI4jkKPMNndXN0vb0j5UVVWJO1ttO9ng5Ku6OpTVxdHdO3cwd39ZlGFpc9oBKMeiI4Ura9i0tpkEBwbin5IrJvPJEUid7D170lJSF81fcOH8+6Yeuor0Le0ti9imDLQOCujrB7kT89UvQHoNEQ45AoLoMD1IcWPGwAtGJ/EbFTvC/IYpRuGtQizQXJyc2YyjtGecfVDncnNvFxaK126Q5ygsONismWmFZFMw+Ed08K+6OsfpK3c65/2KSGfPnBk9YqS3u0fs0GFsbb78/HxX554b16+n48UkORo7um0+1QDfvmbMShvoWiGSoYApydPMb5Vi3PjpJ7Rcn1BA1sgPTG3asIExJeAIqjYoKrHpMioiwuR5EIFO5yKeT9Xfx5cOs+IfdJCRPs4CdS4YU5r4ePbnwLD+wA5dGs9S9VFZWZmYGtTb5pm82ojAxsbwsDB9Vs2oqakRNO9jH5PkxGuW0nVQUNMZFFnq6+WtutgSkAeCXIB/B6Wf/Fl0ussPJgv6RxUVFeB3Y9ACJLDcUsYow4mvj+NCljTZd7H9+w8/yJwoXoyMT44Yzpw+jcaA3rOsMe3C5o0bZR4sCAP50wXhAeKEHeuW5ejVq1c48M3Brmu71uu0LCTnz4GnSsdUCsbrCSAfLAQJqzkzcNTc3Hz3zh3JJSy3bNqMJvE5mYkkCm7epNEjko2ocID8cgOgHHQJJ5aGDRliHo6+OXECY//AcabDH27euIEyxsmhu1rWIYVXjjacrl+7rqGhgbbIsTQjLe2Dl0qdNl03QTHmaQvSFhQIVpfz7N2HTaRT/vgxXdfsg73J/IAu9zb108lsZ2VlJW1qGDk8Vp/FOmWUw9EjR8zDUcbCReK7pyRPe1BS4uftg3tUNEwPnjwWC4JIEsDPt2+fOH68XcNw6PINmHr1cGr6rck8HNG1P9Brg4KaBi+BZtA10xGHoKGA2Xv2GH5BuiIhpsUZbztlzMPRkcOH5aUL6E9VLGeJwAVWXIy06rGkciguKn5jLo5aWlpwSURxgvzKq1PeoC3Q0uUsoTRYsnhxXV2dgZcVKAdQC2y/2fqPQCHQyG2WoEjftjVLXRHCUChJrjca5B9goCKlwxWZWmD7jctRVVXVveJ7ugJKX79+vXb1GqJ5hquoAmKQrDUwTUn81MDrY9MlyGBQC2ynsTgCnTMtKYn1AfV2cQVVIz4GZDadk0q+IYtDXMu/Jl6fekBomLeHJ9uG70sySkF/hAWHtGnFnr1wp7E4EowfhJRz8hQ9AL4vGicMxxtyO/MDqtTQfsHvRQ7ZhvrU990M0nSNbwXAeXhAiuNOo3AEX6W4v4NO9Xzqu5O0WRhktoHrm5gftD8OSgyBVw4ORezQof4+vgbexXQxJy9evKDW4vb1a9efPHkCOaLcwRvSrun9eQC8hO6ubjbv/Eo2Wn9fdjYVD7Bt+BA2AzkCAS8zd5xgVj2WQG8Lvi/QCXwuJyoP6t/RddzgawLBDNmcpNEYJTZGMUcgKePHjYtpVc7BgYGS62TRhmvJBHJi2Rdf6Ipz5hw4vxk4CyYtpRVzxBZjwiWZHO27ldy/LzgGfByZ9dCjIyPVO4dMc3MzFuDz58416b2UcYQxvXQOImzmpXhU9gjKakoNsAk3Ve9AYwZQpJij77791qT3UsbRudxctDAqoi2M2cGuKx3u1NTUtG1rFlVuPp5ed+/eVft8FwxQAmC+TL2gsDKObmlvoYU0LIQ1gZaVlWWuWiVY9AckkLgwVC9owI+p1/dRxtHr168l131Om54i2eUB1RbobZNmxPxgsYgZCxYapYlbBvIc9XJy0hXpkXv2rLxmY8nFyXn3rq/U1UCqJ44dPSpoNjERJDkaNGAAPmRvd4/NGzeC5q+urgaFCZ4a1Ck5p3JWLFtOu7PFqV9AwPasLNU1kHIISY5wJRH9k30XWxBsvl5eY0eNXpOZ+RFMKMcP5Ms6fVL3rvbgq1owCx895Dny9fSCIksXOwNCw1Z/+WVlZaUF7f9XgD66Dlg4n3vu4P4DIDL3ZWeDy6bVag3vBbZCT3A41tIKAawc8Q8rR/zDyhH/sHLEP6wc8Q8rR/zDyhH/sHLEP6wc8Q8rR9H/26FDh5ik1MSEJM2EsKQ0TYImxT3632BnwOw0zcQ/wEbq27+i0qdoUv8bNvynwKFTNUlpkcmJSWmpf4RdQ5KnCQ78L9gITJ6SnBI9LW68JvrtQVEhAYKD/gc2wqbGJWiiNKnJU9LTEpOTUjq8xaJkP8Gh//nu0OjEOcSo8MTUtLZT4vwSl8P/Bef96e15kKmUKZq4GYlJCa2/DElJF2bsz7AxMC4hKXFi4vi4t4a03tE/PS15Kvw5/v8BDtoVaQ=="],"Byte",ColorSpace->"RGB",Interleaving->True];
AppendTo[result,Style["DRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRD",{GrayLevel[0.3]}]];
Print[Grid[{{Image[DRalgoLoad,ImageSize->140],Row[result,"\n",BaseStyle->(FontFamily->"Consolas")]}},Alignment->{Left,Center}]]
(**)
(* ::Section:: *)
(*List of public functions*)
ImportModelDRalgo::usage="\
ImportModelDRalgo[Group,gvvv,gvff,gvss,\[Lambda]1,\[Lambda]3,\[Lambda]4,\[Mu]ij,\[Mu]IJ,\[Mu]IJC,Ysff,YsffC,Verbose->False,Mode->ModeNumber] \
Loads the model and creates help tensors. Here,
gvvv: structure constants
gvff: vector-fermion trilinear couplings
gvss: vector-scalar trilinear couplings
\[Lambda]1: scalar tadpole couplings
\[Lambda]3: cubic couplings
\[Lambda]4: quartic couplings
\[Mu]ij: scalar-mass matrix
\[Mu]IJ: fermion-mass matrices
\[Mu]IJC: fermion-mass matrices
Ysff: Yukawa couplings
YsffC: Yukawa couplings.
";
PerformDRhard::usage="\
Performs the dimensional reduction from hard to soft";
PerformDRsoft::usage="\
PerformDRsoft[{\!\(\*
StyleBox[SubscriptBox[\"s\", \"1\"],\nFontSlant->\"Italic\"]\)\!\(\*
StyleBox[\",\",\nFontSlant->\"Italic\"]\)\!\(\*
StyleBox[\"...\",\nFontSlant->\"Italic\"]\)\!\(\*
StyleBox[\",\",\nFontSlant->\"Italic\"]\)\!\(\*
StyleBox[SubscriptBox[\"s\", \"n\"],\nFontSlant->\"Italic\"]\)}] \
performs the reduction from soft to supersoft by integrating out\
the scalars with indices \!\(\*SubscriptBox[\(s\), \(1\)]\) to \!\(\*SubscriptBox[\(s\), \(n\)]\)";
DefineVectorMass::usage="\
Defines Custom Vector-Boson masses";
PrintDebyeMass::usage="\
Prints Debye Masses in the soft theory";
PrintTemporalScalarCouplings::usage="\
Prints Temporal-Vector Couplings in the soft theory";
PrintIdentification::usage="\
Shows dim-red parameters in terms of 4-d ones";
PrintTensorDRalgo::usage="\
Shows dim-red parameters in terms of 4-d ones";
PrintCouplings::usage="\
Prints all couplings in the soft theory";
PrintScalarMass::usage="\
Prints scalar masses in the soft theory";
BetaFunctions3DUS::usage="\
Prints beta functions in the supersoft theory";
PrintPressure::usage="\
PrintPressure[\!\(\*
StyleBox[\"Order\",\nFontSlant->\"Italic\"]\)] \
calculates the pressure in the soft theory at \
\!\(\*
StyleBox[\"Order\",\nFontSlant->\"Italic\"]\) \[Element]{\"LO\", \"NLO\", \"NNLO\"}";
PrintPressureUS::usage="\
PrintPressureUS[\!\(\*
StyleBox[\"Order\",\nFontSlant->\"Italic\"]\)] \
calculates the pressure in the ultrasoft theory at \
\!\(\*
StyleBox[\"Order\",\nFontSlant->\"Italic\"]\) \[Element]{\"LO\", \"NLO\"}";
PrintEffectivePotential::usage="\
Prints the effective potential in the supersoft theory";
PrintScalarMassUS::usage="\
Prints scalar masses in the supersoft theory";
AnomDim4D::usage="\
Prints anomalous dimensions in the 4d theory";
BetaFunctions4D::usage="\
Prints beta-functions in the 4d theory";
BetaFunctions3DS::usage="\
Prints beta-functions in the soft theory";
DefineNewTensorsUS::usage="\
Defines Custom Tensors for Effective-Potential Computations";
SymmetricPhaseEnergy::usage="\
Prints the energy of the Symmetric Phase";
PrintCouplingsUS::usage="\
Prints couplings in the supersoft theory";
PrintIdentificationUS::usage="\
Shows supersoft parameters in terms of soft parameters";
PrintTensorUSDRalgo::usage="\
Prints tensors in the supersoft theory";
PrintConstants::usage="\
Prints constants used in the matching";
PrintGenericBasis::usage="\
Rewrites the results in a different basis";
PrintTensorsVEV::usage="\
Prints background-field dependent couplings and masses";
DefineVEVS::usage="\
Defines background fields for scalars";
RotateTensorsUSPostVEV::usage="\
Rotate the field basis. Both for scalar and vector.";
RotateTensorsCustomMass::usage="\
Creates custom field-dependent masses";
DefineGroup::usage="Loads the group and names Debye masses";
CalculatePotentialUS::usage="\
Calculates the effective potential";
CalculatePotential::usage="\
Calculates the effective potential";
CompareInvariants::usage="\
Finds relations between couplings by calculating basis-invariant tensors";
AllocateTensors::usage="\
Creates gauge generators";
GradQuartic::usage="Creates Quartic tensors";
GradCubic::usage="Creates Cubic tensors";
GradTadpole::usage="Creates Tadpole tensors";
GradSextic::usage="Creates dim 6 tensors";
GradMass::usage="Creates Mass tensors";
CreateInvariant::usage="Creates an invariant";
CreateInvariantYukawa::usage="Creates Yukawa Tensor";
GradYukawa::usage="Creates Yukawa tensor";
PrintTadpoles::usage="Prints Tadpoles";
PrintGaugeRepPositions::usage="Prints the indices of Gauge reps";
PrintScalarRepPositions::usage="Prints the indices of Scalar reps";
PrintFermionRepPositions::usage="Prints the indices of Fermion reps";
DefineNF::usage="Allows the user to add an arbitrary number of fermion families";
PrintTadpolesUS::usage="Prints tadpoles in the supersoft theory";
GradMassFermion::usage="Creates Fermion Invariants";
CreateInvariantFermion::usage="Creates Fermion Invariants";
SaveModelDRalgo::usage="Saves a model to a file";
LoadModelDRalgo::usage="Loads a model from file";
DefineDim6::usage="Defines a dimension 6 operator";
PrintCouplingsEffective::usage="Prints higher-order couplings";
CounterTerms4D::usage="Prints 4d CounterTerms";
UseUltraSoftTheory::usage="\
Uses ultrasoft couplings to construct the potential";
UseSoftTheory::usage="\
Specifies that soft couplings should be used to construct the potential";
PrepareHET::usage="Remove later";
PrintActionHET::usage="Remove later";
CalculatePotentialHET::usage="Remove later";
PrintScalarKineticHET::usage="Remove later";
DRalgo::failmsg =
"Error! DRalgo has encountered a fatal problem and must abort the computation. \
The problem reads: `1`";
DRalgo::ImplementationFail =
"Error! DRalgo has encountered a problem and must abort the computation. \
The problem reads: `1`";
$DRalgoDirectory=DirectoryName[$InputFileName];
(*
Functions from groupmath are used to create the model.
*)
If[Global`$LoadGroupMath,
Get["GroupMath`"];
Print["GroupMath is an independent package, and is not part of DRalgo"];
Print["Please Cite GroupMath: Comput.Phys.Commun. 267 (2021) 108085 \[Bullet] e-Print: 2011.01764 [hep-th]"];
];
(*
Verbose=True removes progress messages.
Mode=2 calculates everything, Mode=1 only calculates LO masses and couplings
Mode=0 only calculates LO masses
*)
Options[ImportModelDRalgo]={
Verbose -> False,Mode->2,
Dim6->False,
Normalization4D->False,
AutoRG->True}
Begin["`Private`"]
(*
Loads all functions.
*)
Get[FileNameJoin[{$DRalgoDirectory,"Debye.m"}]]; (*Loads additional functions*)
Get[FileNameJoin[{$DRalgoDirectory,"HardToSoft.m"}]];(*Loads Hard -> Soft functions*)
Get[FileNameJoin[{$DRalgoDirectory,"SoftToUS.m"}]];(*Loads Soft -> SS functions*)
Get[FileNameJoin[{$DRalgoDirectory,"EffPot.m"}]];(*Loads Effective Potential Functions*)
Get[FileNameJoin[{$DRalgoDirectory,"ModelCreation.m"}]];(*Loads Effective Potential Functions*)
Get[FileNameJoin[{$DRalgoDirectory,"HEFT.m"}]];(*Loads Higgs-Effective field theory Functions*)
(* ::Section:: *)
(*Initialization*)
(*
Defines internal tensors from the loaded model. Also creates help-tensors used for
intermediate calculations.
*)
ImportModelDRalgo[GroupI_,gvvvI_,gvffI_,gvssI_,\[Lambda]1I_,\[Lambda]3I_,\[Lambda]4I_,\[Mu]ijI_,\[Mu]IJFI_,\[Mu]IJFCI_,YsffI_,YsffCI_, OptionsPattern[]]:=Module[{GroupP=GroupI,gvvvP=gvvvI,gvffP=gvffI,gvssP=gvssI,\[Lambda]1IP=\[Lambda]1I,\[Lambda]3P=\[Lambda]3I,\[Lambda]4P=\[Lambda]4I,\[Mu]ijP=\[Mu]ijI,\[Mu]IJFP=\[Mu]IJFI,\[Mu]IJFCP=\[Mu]IJFCI,YsffP=YsffI,YsffCP=YsffCI},
If[ Global`$LoadGroupMath,
If[!GroupMathCleared && !ValueQ[Global`$GroupMathMultipleModels],
Remove["GroupMath`*"];
GroupMathCleared=True;
];
];
\[Mu]ij=\[Mu]ijP//SparseArray//SimplifySparse;
gvvv=gvvvP//SparseArray//SimplifySparse;
gvss=gvssP//SparseArray//SimplifySparse;
\[Lambda]4=\[Lambda]4P//SparseArray//SimplifySparse;
\[Lambda]3=\[Lambda]3P//SparseArray//SimplifySparse;
Ysff=YsffP//SparseArray//SimplifySparse;
YsffC=YsffCP//SparseArray//SimplifySparse;
gvff=gvffP//SparseArray//SimplifySparse;
\[Mu]IJF=\[Mu]IJFP//SparseArray//SimplifySparse;
\[Mu]IJFC=\[Mu]IJFCP//SparseArray//SimplifySparse;
\[Lambda]1=\[Lambda]1IP//SparseArray//SimplifySparse;
ns=Length[gvss[[1]]];
nv=Length[gvvv];
nf=Length[gvff[[1]]];
\[Lambda]6=EmptyArray[{ns,ns,ns,ns,ns,ns}];
(*Options*)
verbose = OptionValue[Verbose];
mode = OptionValue[Mode]; (*If 2 everthing is calculated. And if 2 only 1-loop contributions are calculated*)
NFMat=IdentityMatrix[nf]//SparseArray; (*This matrix is only relevant if the user wants an arbitrary number of fermion families*)
normalization4D=OptionValue[Normalization4D];
If[OptionValue[AutoRG],rgFac=1,rgFac=0]; (*Determines whether the RG-running is automatically incorporated in the soft masses and tadpoles*)
(*End of Options*)
CT=False; (*Checks if counter-terms have already been calculated*)
DefineGroup[GroupP]; (*Names Debye masses*)
GroupDR=GroupP; (*For saving purposes*)
CreateHelpTensors[] (*Creates recurring tensors*)
];
(*
Defines a \[Phi]^6 operator
*)
DefineDim6[\[Lambda]6I_]:=Module[{\[Lambda]6P=\[Lambda]6I},
If[mode>=3,
\[Lambda]6=\[Lambda]6P//SparseArray;
,
Message[DRalgo::ImplementationFail, "Please set mode=3 to use this feature"];
Abort[]
];
];
(*
Takes the user-defined group and names debye masses.
*)
DefineGroup[GroupI_]:=Module[{GroupP=GroupI},
(*The Debye mass matrix is \[Mu]abDef*)
(*At tree-level this matrix is 0. But after DR, thermal masses are named accoording to \[Mu]abDef.*)
\[Mu]abDef=CreateDebyeMasses[GroupP];
VecMassDefined=True;
];
(*
Enables the user to add an arbitrary number of fermions.
This works by creating a diagonal matrix. Each element NFMatP[[i,i]] corresponds to how many times the
fermion labled by ii appears.
*)
DefineNF[NFMatP_]:=Module[{NFMatI=NFMatP},
Do[NFMat[[i[[2]],i[[2]]]]*=i[[1]],{i,NFMatI}];(*Each element is multiplied with nF_i*)
];
(*
Performs the dimensional reduction for all couplings and masses.
*)
PerformDRhard[]:=Module[{},
If[mode>=0,
CreateBasisVanDeVis[]; (*Creates a basis of "couplings" to identify all linearly-independent dimensionally reduced paramters*)
ScalarMass[];
VectorMass[];
TadPole[];
];
If[mode>=1,
ScalarSelfEnergy[];
VectorSelfEnergy[];
ScalarCubic[];
ScalarQuartic[];
TransverseSSVV[];
LongitudionalSSVV[];
LongitudionalVVVV[];
LongitudionalVVS[];
];
If[mode>=2,
CounterTerm[];
VectorMass2Loop[];
ScalarMass2Loop[];
TadPole2Loop[];
SymmetricPhaseEnergy[];
];
If[mode>=3,
(*Calculates effective dim 6 operators*)
ScalarSextic[];
];
(*
This step takes all calculations and removes redundancies. For example, if one element is (g^4 Lb)
and another 3(g^4 Lb), the function replaces element 2 by three times the first element. This also
works for linear combinations of elements.
*)
IdentifyTensorsDRalgo[];
];
(*
Performs the reduction from soft to supersoft.
ListHardP is a list which tells the code which scalars should be integrated out.
By default all Debye-vectors (temporal-vectors) are integrated out.
*)
PerformDRsoft[ListHardP_]:=Module[{ListHardI=ListHardP},
PrepareSoftToSuperSoft[ListHardI];
CreateHelpTensorsSS[];
ScalarSelfEnergySS[];
TadPoleSS[];(*Calculates tadpoles*)
HeavyScalarMassSS[];(*Includes self-energies for heavy-lines with soft momenta*)
VectorSelfEnergySS[];
ScalarMassSS[];
If[mode>=1,
ScalarVectorCouplingSS[];
ScalarQuarticSS[];
ScalarCubicsSS[];
];
If[mode>=2,
ScalarMass2LoopSS[];
SymmetricPhaseEnergyUS[];
];
(*
This step takes all calculations and removes redundancies. For example, if one element is (g^4 Lb)
and another 3(g^4 Lb), the function replaces element 2 by three times the first element. This also
works for linear combinations of elements.
*)
IdentifyTensorsSSDRalgo[]
];
(* ::Section:: *)
(*Help functions*)
OutputFormatDR[x_]:=ToExpression[StringReplace[ToString[StandardForm[x]],"DRalgo`Private`"->""]];
(*
Prints constants that appear in the effective theory.
*)
PrintConstants[]:=Module[{},
ToExpression[StringReplace[ToString[StandardForm[{Lb->(Log[\[Mu]^2/T^2]-2 Log[4 \[Pi]]+2EulerGamma),Lf->(Log[\[Mu]^2/T^2]-2 Log[4 \[Pi]]+2EulerGamma+4 Log[2])}]],"DRalgo`Private`"->""]]
];
(*
Replaces the Glaisher constant by c, which is sometimes used in the litterature. See for example hep-ph: 9508379
*)
PrintGenericBasis[]:=Module[{},
ToExpression[StringReplace[ToString[StandardForm[{Log[Glaisher]->-1/12 (Lb+2cplus-EulerGamma)}]],"DRalgo`Private`"->""]]
];
(*
Checks if two variables are identical up to a numerical factor
For example if a=x^2 y and b=y, then there's no relation, and the function returns nothing.
While if a=x^2 and b=5 x^2 the function returns 5
*)
CompExp2[a0_,b0_]:=Module[{a=a0,b=b0},
Comps=Solve[a v[1]- b ==0,v[1]]//Simplify//DeleteDuplicates//Select[#,UnsameQ[#,{}]&]&;
Comps/. {v[x_]->a_}:>a
]
(*
Old function: Should maybe be removed.
This function finds linear dependencies between the variables in list.
Only numerical factors are included.
The result is given in Mat. Where Mat[[i,j]]=0 if list[[i]]!=N list[[j]] where N is a number.
Otherwise Mat[[i,j]]=N if list[[i]]=Nlist[[j]]
*)
OverallFac[list_,varMat_]:=Module[{L=list,Mat=varMat},
For[i=1,i<Length[list],i++,
For[j=i+1,j<Length[list]+1,j++,
help=CompExp2[list[[i]],list[[j]]];
TempIf=If[Length[help]>0,{NumericQ/@help}[[1,1]]&&Equal@@NumericQ/@help,False];
If[TempIf,a=help[[1]],a=0];
Mat[[i,j]]=a;
];
];
Mat
]
(*
Old function:Should maybe be removed.
This function finds linear dependences between the variables in listvar
Only relations between two variables are considered.
This function is only used for the soft->supersoft step where the faster, and more general,
RelationsBVariables3 has problems due to inverse powers of masses.
*)
RelationsBVariables[list_,listVar_]:=Module[{L=list,LV=listVar},
LVTemp=LV;
If[L[[1]]==0,
L=Delete[L,1];
];
Mat=ConstantArray[0,{Length[L],Length[L]}];(*Linear-dependency matrix*)
Mat1=OverallFac[L,Mat];
TempVar=ConstantArray[0,{Length[LV]}];
For[i=1,i<Length[LV],i++,
For[j=i+1,j<Length[LV]+1,j++,
IfTemp=Mat1[[1;;i,j]]//DeleteDuplicates//DeleteCases[#,0,Infinity]&; (*Removes cases when the numerical factor is 0 or infinity*)
If[Length[IfTemp]==1&&Mat1[[i,j]]!=0,
LVTemp[[j]]=Mat1[[i,j]]LV[[i]];(*Creates a list with all linear relations*)
];
];
];
LVTemp
]
(*
Creates a list of all possible couplings that can appear in
1-loop matching relations
Note that this does not include couplings in debye/scalar masses
at 1-loop level
*)
CreateBasisVanDeVis[]:=Module[{},
(* This module received founding from the fish *)
FermionFamVar=Normal[NFMat]//Variables;
ScalVar=\[Lambda]4//Normal//Variables;
GaugeVarPre=Join[Normal[gvvv]//Variables,Normal[gvff]//Variables,Normal[gvss]//Variables]//DeleteDuplicates; (*Includes possible non-numeric charges*)
GaugeCharge=Complement[GaugeVarPre,GaugeCouplingNames];(*Possible non-numeric gauge charges*)
GaugeVarHelp=Table[i*j,{i,GaugeCouplingNames},{j,GaugeCharge}];
GaugeVar=Join[GaugeCouplingNames,GaugeVarHelp];
YukVar=Normal[Ysff]//Variables;
AuxVar={1,Lb,Lf};
AuxVar=Join[AuxVar,FermionFamVar]//DeleteDuplicates;
varHelp=Join[ScalVar,GaugeVar,YukVar];
t2=Table[i*j,{i,varHelp},{j,varHelp}]//Flatten[#]&//DeleteDuplicates;
t3G=Table[i*j*k,{i,ScalVar},{j,GaugeVar},{k,GaugeVar}]//Flatten[#]&//DeleteDuplicates;
t3F=Table[i*j*k,{i,ScalVar},{j,YukVar},{k,YukVar}]//Flatten[#]&//DeleteDuplicates;
t4=Table[i*j*k*l,{i,GaugeVar},{j,GaugeVar},{k,GaugeVar},{l,GaugeVar}]//Flatten[#]&//DeleteDuplicates;
t4F=Table[i*j*k*l,{i,YukVar},{j,YukVar},{k,YukVar},{l,YukVar}]//Flatten[#]&//DeleteDuplicates;
t4FG=Table[i*j*k*l,{i,YukVar},{j,YukVar},{k,GaugeVar},{l,GaugeVar}]//Flatten[#]&//DeleteDuplicates;
basPre=Join[varHelp,t2,t3G,t3F,t4,t4F,t4FG];
basDR=Table[i*j*k,{i,basPre},{j,AuxVar},{k,{1,T,T^2}}]//Flatten[#]&//DeleteDuplicates;
]
{basDR};
(*
This function finds linear dependences between the variables in list.
This works by treating each element in list as a vector in the space spanned by basDR.
All vectors are then rowreduced, and a minimal set of basis vectors (in list) are found.
*)
RelationsBVariables3[list_]:=Module[{L=list},
(*Creates a vector-basis*)
(*One could say that v3 and v2 are identical. With v3 being almost twice as identical as v2*)
If[L[[1]]==0&&Length[L]>1,
Lp=Delete[L,1];
,
Lp=L;
];
varHelp=Lp//Variables;
varFix=#->0&/@varHelp; (*Trick to ensure that vectors are expanded properly*)
(*
Expands all elements in Lp in terms of basDR.
*)
setVecs=Table[Coefficient[i,basDR],{i,Lp}]/.varFix;
(*Delete columns with only 0s*)
setVecs=Transpose[DeleteCases[Transpose[setVecs], {0 ..}, Infinity]];
(*Finds independent basis*)
rr = setVecs // Transpose // RowReduce;
rr=DeleteCases[rr, {0 ..}, Infinity];
(*Basis elements*)
basisElements = Flatten[FirstPosition[#, 1, Nothing] & /@ rr];
varBasis=Table[ \[Lambda]VL[a],{a,1,Length[basisElements]}];
(*Puts everything together*)
LVTemp=LVTemp=ConstantArray[0,Length[Lp]];
Do[LVTemp[[i]]=rr[[;;,i]] . varBasis,{i,1,Length[LVTemp]}];
Return[LVTemp];
]
myPrint[args__,{style__}]:=Print[Row[{args},BaseStyle->{style}]]
(*
Old function: Should maybe be removed.
This function finds linear dependencies between the variables in list.
Only numerical factors are included.
The result is given in Mat. Where Mat[[i,j]]=0 if list[[i]]!=N list[[j]] where N is a number.
Otherwise Mat[[i,j]]=N if list[[i]]=Nlist[[j]]
*)
OverallFac2[list_,varMat_]:=Module[{L=list,Mat=varMat},
TotVar=L//Variables;
DoneList=ConstantArray[0,1];
For[i=1,i<Length[list],i++,
Var=list[[i]]//Variables;
varCompliment=Complement[TotVar,Var];
For[j=i+1,j<Length[list]+1,j++,
If[!MemberQ[DoneList, j],
If[!CheckVariables[list[[j]],varCompliment],
h=CompExp3[list[[i]],list[[j]]];
Mat[[i,j]]=h;
If[h!=0,AppendTo[DoneList,j]];
];
];
];
];
Mat
]
(*
This function finds linear dependencies between the variables in list.
Only numerical factors are included.
The result is given in Mat. Where Mat[[i,j]]=0 if list[[i]]!=N list[[j]] where N is a number.
Otherwise Mat[[i,j]]=N if list[[i]]=Nlist[[j]]
*)
RelationsBVariables2[list_,listVar_]:=Module[{L=list,LV=listVar},
LVTemp=LV//FullSimplify;
Mat=ConstantArray[0,{Length[Delete[L,1]],Length[Delete[L,1]]}];(*Linear-dependency matrix*)
Mat1=OverallFac2[Delete[L,1],Mat];
TempVar=ConstantArray[0,{Length[LV]}];
For[i=1,i<Length[LV],i++,
For[j=i+1,j<Length[LV]+1,j++,
IfTemp=Mat1[[1;;i,j]]//DeleteDuplicates//DeleteCases[#,0,Infinity]&; (*Removes cases when the numerical factor is 0 or infinity*)
If[Length[IfTemp]==1&&Mat1[[i,j]]!=0,
LVTemp[[j]]=Mat1[[i,j]]LV[[i]](*Creates a list with all linear relations*)
];
];
];
LVTemp
]
CheckVariables[a_,Vars_]:=MemberQ[Boole@(MemberQ[a, #, {0, -1}, Heads -> True]&/@Vars),1, {0, -1}, Heads -> True];
(*
Checks if two variables are identical up to a numerical factor
For example if a=x^2 y and b=y, then there's no relation, and the function returns nothing.
While if a=x^2 and b=5 x^2 the function returns 5.
*)
CompExp3[a0_,b0_]:=Module[{a=a0,b=b0},
Temp=Simplify[b/a];
If[NumericQ[Temp],Return[Temp],Return[0]];
]
(* ::Section:: *)
(*Functions for loading and printing*)
(*
Converts an array to a saveable form
*)
ConvertToSaveFormat[tens_SparseArray]:=Module[{},
Return[{tens["NonzeroPositions"],tens["NonzeroValues"],Dimensions[tens]}]
];
(*
Converts imported data, as defined by ConvertToSaveFormat, to a sparse array
*)
ConvertToSparse[arr_]:=Module[{},
Return[SparseArray[arr[[1]]->arr[[2]],arr[[3]]]]
];
(*
Loads the position of all scalar,gauge, and fermion representations.
*)
LoadRepPositions[repPos_]:=Module[{repPosP=repPos},
ScalarVariablesIndices=repPosP[[1]];
GaugeIndices=repPosP[[2]];
FermionVariablesIndices=repPosP[[3]];
];
(*
Loads the names of gauge couplings.
*)
LoadCouplingNames[couplingNamesI_]:=Module[{couplingNamesP=couplingNamesI},
GaugeCouplingNames=couplingNamesP;
];
(*
Saves a model by converting all coupling-tensors to a list.
*)
SaveModelDRalgo[modelInfo_,fileName_]:=Module[{modelInfoP=modelInfo},
PosScalar=PrintScalarRepPositions[];
PosVector=PrintGaugeRepPositions[];
PosFermion=PrintFermionRepPositions[];
PosReps={PosScalar,PosVector,PosFermion};
tensP={modelInfoP,PosReps,GaugeCouplingNames,GroupDR,gvvv,gvff,gvss,\[Lambda]1,\[Lambda]3,\[Lambda]4,\[Mu]ij,\[Mu]IJFC,\[Mu]IJF,Ysff,YsffC};
SaveFile={tensP[[1]],tensP[[2]],tensP[[3]],tensP[[4]]}; (*The fourth element is the group*)
tensP=Delete[Delete[Delete[Delete[tensP,1],1],1],1];
Do[
AppendTo[SaveFile,ConvertToSaveFormat[i]];
,{i,tensP}];
Export[fileName,SaveFile];
];
(*
Loads tensors that are saved by SaveModelDRalgo
*)
LoadModelDRalgo[fileName_]:=Module[{},
arrImp=ReadList[fileName];
InfoText=arrImp[[1]];(*The first element is the info*)
arrImp=Delete[arrImp,1];
LoadRepPositions[arrImp[[1]]];(*The Second element is the repPositions*)
arrImp=Delete[arrImp,1];
LoadCouplingNames[arrImp[[1]]];(*The Third element is the gauge-coupling names*)
arrImp=Delete[arrImp,1];
ImportFile={arrImp[[1]]};(*The fourth element is the group*)
arrImp=Delete[arrImp,1];
Do[
AppendTo[ImportFile,ConvertToSparse[i]];
,{i,arrImp}];
(*Prints the info text*)
Print[Grid[{{Row[InfoText,"\n",BaseStyle->(FontFamily->"Consolas")]}},Alignment->{Left,Center}]];
(**)
Return[ImportFile]
];
(*
All private constants.
*)
{ZLij,GvvssTSS,\[Lambda]3DSS,\[Mu]ijSSLO,\[Mu]ijSSNLO,\[Mu]ijSNLOSS,\[Lambda]3DSS,\[Lambda]KVecTSS,\[Lambda]3CTot,\[Lambda]3CSSS,ZSij,\[Mu]ijSSNLO2,Ggvvv};
{TadPoleS,ContriTadPoleSoftToHard,GgvvvSS,\[Lambda]4SMod,\[Lambda]4Tot,IdentMatPre};
{\[Beta]gvff,Zgvff,\[Mu]ijEP,gvvvEP,gvssEP,\[Lambda]4EP,\[Lambda]3EP,nsEP,nvEP,CT,HelpSolveEffectiveHardM};
{aS3D,ZijS,aV3D,ZabT,ZabL,\[Lambda]3D,GvvssL,GvvssT,\[Lambda]AA,\[Lambda]3CS,\[Mu]SijNLO,GvvsL};(*DimRed Results*)
{\[CapitalLambda]\[Lambda],\[CapitalLambda]g,Hg,Habij,HabIJF,HabIJFC,Ysij,YsijC,YTemp,YTempC,Yhelp,YhelpC};(*Private Variables*)
{\[Gamma]ij,\[Beta]mij,\[Beta]\[Lambda]ijkl,Z\[Lambda]ijkl,\[Gamma]ab,\[Beta]vvss,Zgvvss,\[Beta]gvvv,Zgvvv,\[Gamma]IJF,\[Beta]Ysij,ZYsij,\[Beta]YsijC,ZYsijC};(*CounterTerms*)
{\[Lambda]3DS,\[Lambda]KVecT,\[Lambda]KVec,\[Lambda]AAS,IdentMat,\[Mu]ijVNLO,\[Mu]ijSNLO,\[Lambda]3CSRed,\[Lambda]1IP,NFMat,NSMat};(*Private Variables*)
{nsH,nSl,\[Lambda]K,\[Lambda]4S,\[Lambda]4K,\[Lambda]x,\[Lambda]y,gAvss,gvssL,\[Mu]ijL,\[Mu]ijLight};
{HabijL,HabijVL,HabijA,HabijVA,\[Lambda]3Cx,\[Lambda]3Cy,\[Lambda]3CLight,\[Lambda]3CHeavy,\[Mu]IJF,\[Mu]IJFC,\[Mu]VabNLO,\[Mu]abDef,GroupMathCleared}
End[]
EndPackage[]