-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_TEMPO_prob.py
402 lines (319 loc) · 15.5 KB
/
train_TEMPO_prob.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
from tempo.data_provider.data_factory import data_provider
from tempo.utils.tools import EarlyStopping, adjust_learning_rate, visual, vali, test, test_probs
from torch.utils.data import Subset
from tqdm import tqdm
from tempo.models.PatchTST import PatchTST
from tempo.models.GPT4TS import GPT4TS
from tempo.models.DLinear import DLinear
from tempo.models.TEMPO import TEMPO
from tempo.models.T5 import T54TS
from tempo.models.ETSformer import ETSformer
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from numpy.random import choice
import os
import time
import warnings
import matplotlib.pyplot as plt
import numpy as np
import argparse
import random
import sys
from omegaconf import OmegaConf
def get_init_config(config_path=None):
config = OmegaConf.load(config_path)
return config
warnings.filterwarnings('ignore')
fix_seed = 2021
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
def print_dataset_info(data, loader, name="Dataset"):
print(f"\n=== {name} Information ===")
print(f"Number of samples: {len(data)}")
print(f"Batch size: {loader.batch_size}")
print(f"Number of batches: {len(loader)}")
for attr in ['features', 'targets', 'shape']:
if hasattr(data, attr):
print(f"{attr}: {getattr(data, attr)}")
# for batch in loader:
# if isinstance(batch, (tuple, list)):
# print("\nFirst batch shapes:")
# for i, item in enumerate(batch):
# print(f"Item {i} shape: {item.shape if hasattr(item, 'shape') else 'N/A'}")
# else:
# print(f"\nFirst batch shape: {batch.shape if hasattr(batch, 'shape') else 'N/A'}")
# break
def prepare_data_loaders(args, config):
"""
Prepare train, validation and test data loaders.
Args:
args: Arguments containing dataset configurations
config: Configuration dictionary
Returns:
tuple: (train_data, train_loader, test_data, test_loader, val_data, val_loader)
"""
train_datas = []
val_datas = []
min_sample_num = sys.maxsize
# First pass to get validation data and minimum sample number
for dataset_name in args.datasets.split(','):
_update_args_from_config(args, config, dataset_name)
train_data, train_loader = data_provider(args, 'train')
if dataset_name not in ['ETTh1', 'ETTh2', 'ILI', 'exchange', 'monash']:
min_sample_num = min(min_sample_num, len(train_data))
for dataset_name in args.eval_data.split(','):
_update_args_from_config(args, config, dataset_name)
val_data, val_loader = data_provider(args, 'val')
val_datas.append(val_data)
# Second pass to prepare training data with proper sampling
for dataset_name in args.datasets.split(','):
_update_args_from_config(args, config, dataset_name)
train_data, _ = data_provider(args, 'train')
if dataset_name not in ['ETTh1', 'ETTh2', 'ILI', 'exchange', 'monash'] and args.equal == 1:
train_data = Subset(train_data, choice(len(train_data), min_sample_num))
if args.equal == 1:
if dataset_name == 'electricity' and args.electri_multiplier > 1:
train_data = Subset(train_data, choice(len(train_data),
int(min_sample_num * args.electri_multiplier)))
elif dataset_name == 'traffic' and args.traffic_multiplier > 1:
train_data = Subset(train_data, choice(len(train_data),
int(min_sample_num * args.traffic_multiplier)))
train_datas.append(train_data)
# Combine datasets if multiple exist
if len(train_datas) > 1:
train_data = _combine_datasets(train_datas)
val_data = _combine_datasets(val_datas)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers)
val_loader = torch.utils.data.DataLoader(val_data, batch_size=args.batch_size,
shuffle=False, num_workers=args.num_workers)
# Prepare test data
_update_args_from_config(args, config, args.target_data)
test_data, test_loader = data_provider(args, 'test')
print_dataset_info(train_data, train_loader, "Training Dataset")
print_dataset_info(val_data, val_loader, "Validation Dataset")
print_dataset_info(test_data, test_loader, "Test Dataset")
return train_data, train_loader, test_data, test_loader, val_data, val_loader
def _update_args_from_config(args, config, dataset_name):
"""Update args with dataset specific configurations"""
dataset_config = config['datasets'][dataset_name]
for key in ['data', 'root_path', 'data_path', 'data_name', 'features',
'freq', 'target', 'embed', 'percent', 'lradj']:
setattr(args, key, getattr(dataset_config, key))
if args.freq == 0:
args.freq = 'h'
def _combine_datasets(datasets):
"""Combine multiple datasets into one"""
combined = datasets[0]
for dataset in datasets[1:]:
combined = torch.utils.data.ConcatDataset([combined, dataset])
return combined
parser = argparse.ArgumentParser(description='GPT4TS')
parser.add_argument('--model_id', type=str, default='weather_GTP4TS_multi-debug')
parser.add_argument('--checkpoints', type=str, default='/l/users/defu.cao/checkpoints_multi_dataset/')
parser.add_argument('--task_name', type=str, default='long_term_forecast')
parser.add_argument('--prompt', type=int, default=0)
parser.add_argument('--num_nodes', type=int, default=1)
parser.add_argument('--seq_len', type=int, default=512)
parser.add_argument('--pred_len', type=int, default=96)
parser.add_argument('--label_len', type=int, default=48)
parser.add_argument('--decay_fac', type=float, default=0.9)
parser.add_argument('--learning_rate', type=float, default=0.001)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--train_epochs', type=int, default=10)
parser.add_argument('--lradj', type=str, default='type3') # for what
parser.add_argument('--patience', type=int, default=5)
parser.add_argument('--gpt_layers', type=int, default=6)
parser.add_argument('--is_gpt', type=int, default=1)
parser.add_argument('--e_layers', type=int, default=3)
parser.add_argument('--d_model', type=int, default=768)
parser.add_argument('--n_heads', type=int, default=4)
parser.add_argument('--d_ff', type=int, default=768)
parser.add_argument('--dropout', type=float, default=0.3)
parser.add_argument('--enc_in', type=int, default=7)
parser.add_argument('--c_out', type=int, default=7)
parser.add_argument('--patch_size', type=int, default=16)
parser.add_argument('--kernel_size', type=int, default=25)
parser.add_argument('--loss_func', type=str, default='mse')
parser.add_argument('--pretrain', type=int, default=1)
parser.add_argument('--freeze', type=int, default=1)
parser.add_argument('--model', type=str, default='GPT4TS_multi')
parser.add_argument('--stride', type=int, default=8)
parser.add_argument('--max_len', type=int, default=-1)
parser.add_argument('--hid_dim', type=int, default=16)
parser.add_argument('--tmax', type=int, default=10)
parser.add_argument('--itr', type=int, default=3)
parser.add_argument('--cos', type=int, default=0)
parser.add_argument('--equal', type=int, default=1, help='1: equal sampling, 0: dont do the equal sampling')
parser.add_argument('--pool', action='store_true', help='whether use prompt pool')
parser.add_argument('--no_stl_loss', action='store_true', help='whether use prompt pool')
parser.add_argument('--stl_weight', type=float, default=0.01)
parser.add_argument('--config_path', type=str, default='./data_config.yml')
parser.add_argument('--datasets', type=str, default='exchange')
parser.add_argument('--target_data', type=str, default='ETTm1')
#eval_data
parser.add_argument('--eval_data', type=str, default='exchange')
parser.add_argument('--use_token', type=int, default=0)
parser.add_argument('--electri_multiplier', type=int, default=1)
parser.add_argument('--traffic_multiplier', type=int, default=1)
parser.add_argument('--embed', type=str, default='timeF')
parser.add_argument('--num_samples', type=int, default=30)
#args = parser.parse_args([])
args = parser.parse_args()
config = get_init_config(args.config_path)
args.itr = 1
print(args)
SEASONALITY_MAP = {
"minutely": 1440,
"10_minutes": 144,
"half_hourly": 48,
"hourly": 24,
"daily": 7,
"weekly": 1,
"monthly": 12,
"quarterly": 4,
"yearly": 1
}
mses = []
maes = []
for ii in range(args.itr):
setting = '{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_gl{}_df{}_eb{}_itr{}'.format(args.model_id, 336, args.label_len, args.pred_len,
args.d_model, args.n_heads, args.e_layers, args.gpt_layers,
args.d_ff, args.embed, ii)
path = os.path.join(args.checkpoints, setting)
if not os.path.exists(path):
os.makedirs(path)
# if args.freq == 0:
# args.freq = 'h'
device = torch.device('cuda:0')
# Load the data
train_data, train_loader, test_data, test_loader, vali_data, vali_loader = prepare_data_loaders(args, config)
time_now = time.time()
train_steps = len(train_loader) #190470 -52696
if args.model == 'PatchTST':
model = PatchTST(args, device)
model.to(device)
elif args.model == 'DLinear':
model = DLinear(args, device)
model.to(device)
elif args.model == 'TEMPO':
model = TEMPO(args, device)
model.to(device)
elif args.model == 'T5':
model = T54TS(args, device)
model.to(device)
elif 'ETSformer' in args.model:
model = ETSformer(args, device)
model.to(device)
else:
model = GPT4TS(args, device)
# mse, mae = test(model, test_data, test_loader, args, device, ii)
params = model.parameters()
model_optim = torch.optim.Adam(params, lr=args.learning_rate)
early_stopping = EarlyStopping(patience=args.patience, verbose=True)
if args.loss_func == 'mse':
criterion = nn.MSELoss()
elif args.loss_func == 'smape':
class SMAPE(nn.Module):
def __init__(self):
super(SMAPE, self).__init__()
def forward(self, pred, true):
return torch.mean(200 * torch.abs(pred - true) / (torch.abs(pred) + torch.abs(true) + 1e-8))
criterion = SMAPE()
elif args.loss_func == 'prob':
import torch.distributions as dist
def criterion(y_true, y_pred):
y_true = y_true.squeeze()
mu, sigma, nu = y_pred[0], y_pred[1], y_pred[2]
# Create the Student's t-distribution
nu = torch.abs(nu) + 1e-6
sigma = torch.abs(sigma) + 1e-6
mu = mu
student_t = dist.StudentT(df=nu, loc=mu, scale=sigma)
# Calculate the negative log-likelihood
nll = -student_t.log_prob(y_true)
return nll.mean()
elif args.loss_func == 'negative_binomial':
import torch.distributions as dist
def criterion(target, y_pred):
# Compute negative log-likelihood of Negative Binomial distribution
mu, alpha = y_pred[0], y_pred[1]
if len(target.shape)!=3:
target = target.unsqueeze(2)
log_gamma_x_plus_n = torch.lgamma(target + 1.0 / alpha)
log_gamma_x = torch.lgamma(target + 1)
log_gamma_n = torch.lgamma(1.0 / alpha)
log_prob = log_gamma_x_plus_n - log_gamma_x - log_gamma_n \
- (target + 1.0 / alpha) * torch.log1p(alpha * mu) \
+ target * torch.log(alpha * mu) - target * torch.log1p(alpha * mu)
return -log_prob.mean()
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(model_optim, T_max=args.tmax, eta_min=1e-8)
for epoch in range(args.train_epochs):
iter_count = 0
train_loss = []
epoch_time = time.time()
for i, data in tqdm(enumerate(train_loader),total = len(train_loader)):
batch_x, batch_y, batch_x_mark, batch_y_mark = data[0], data[1], data[2], data[3]
iter_count += 1
model_optim.zero_grad()
batch_x = batch_x.float().to(device)
batch_y = batch_y.float().to(device)
batch_x_mark = batch_x_mark.float().to(device)
batch_y_mark = batch_y_mark.float().to(device)
# print(seq_seasonal.shape)
if args.model == 'TEMPO' or 'multi' in args.model:
seq_trend = seq_trend.float().to(device)
seq_seasonal = seq_seasonal.float().to(device)
seq_resid = seq_resid.float().to(device)
outputs, loss_local = model(batch_x, ii, seq_trend, seq_seasonal, seq_resid) #+ model(seq_seasonal, ii) + model(seq_resid, ii)
elif 'former' in args.model:
dec_inp = torch.zeros_like(batch_y[:, -args.pred_len:, :]).float()
dec_inp = torch.cat([batch_y[:, :args.label_len, :], dec_inp], dim=1).float().to(device)
outputs = model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
else:
outputs = model(batch_x, ii)
if args.loss_func == 'prob' or args.loss_func == 'negative_binomial':
# outputs = outputs[:, -args.pred_len:, :]
batch_y = batch_y[:, -args.pred_len:, :].to(device).squeeze()
loss = criterion(batch_y, outputs)
else:
outputs = outputs[:, -args.pred_len:, :]
batch_y = batch_y[:, -args.pred_len:, :].to(device)
loss = criterion(outputs, batch_y)
if args.model == 'GPT4TS_multi' or args.model == 'TEMPO_t5':
if not args.no_stl_loss:
loss += args.stl_weight*loss_local
train_loss.append(loss.item())
if (i + 1) % 1000 == 0:
print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item()))
speed = (time.time() - time_now) / iter_count
left_time = speed * ((args.train_epochs - epoch) * train_steps - i)
print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time))
iter_count = 0
time_now = time.time()
loss.backward()
model_optim.step()
print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time))
train_loss = np.average(train_loss)
vali_loss = vali(model, vali_data, vali_loader, criterion, args, device, ii)
print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f}".format(
epoch + 1, train_steps, train_loss, vali_loss))
if args.cos:
scheduler.step()
print("lr = {:.10f}".format(model_optim.param_groups[0]['lr']))
else:
adjust_learning_rate(model_optim, epoch + 1, args)
early_stopping(vali_loss, model, path)
if early_stopping.early_stop:
print("Early stopping")
break
best_model_path = path + '/' + 'checkpoint.pth'
model.load_state_dict(torch.load(best_model_path), strict=False)
print("------------------------------------")
preds, trues = test_probs(model, test_data, test_loader, args, device, ii)
torch.cuda.empty_cache()
print("------------------------------------")