-
Notifications
You must be signed in to change notification settings - Fork 1
/
modeling.py
215 lines (177 loc) · 6.67 KB
/
modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import time
import json
from typing import Optional
import torch
import openai
import tiktoken
from fire import Fire
from pydantic import BaseModel
from transformers import (
PreTrainedModel,
PreTrainedTokenizer,
AutoModelForSeq2SeqLM,
AutoTokenizer,
)
class DummyImport:
LLM = None
SamplingParams = None
try:
import vllm
from vllm.lora.request import LoRARequest
except ImportError:
print("vLLM not installed")
vllm = DummyImport()
LoRARequest = lambda *args: args
class EvalModel(BaseModel, arbitrary_types_allowed=True):
path_model: str
max_input_length: int = 512
max_output_length: int = 512
def run(self, prompt: str) -> str:
raise NotImplementedError
class VLLMModel(EvalModel):
path_model: str
model: vllm.LLM = None
quantization: Optional[str] = None
tokenizer: Optional[PreTrainedTokenizer] = None
tensor_parallel_size: int = 1
def load(self):
if self.model is None:
self.model = vllm.LLM(
model=self.path_model,
trust_remote_code=True,
quantization=self.quantization,
tensor_parallel_size=self.tensor_parallel_size,
)
if self.tokenizer is None:
self.tokenizer = AutoTokenizer.from_pretrained(self.path_model)
def format_prompt(self, prompt: str) -> str:
self.load()
prompt = prompt.rstrip(" ")
return prompt
def make_kwargs(self, do_sample: bool, **kwargs) -> dict:
params = vllm.SamplingParams(
temperature=0.5 if do_sample else 0.0,
max_tokens=self.max_output_length,
**kwargs
)
outputs = dict(sampling_params=params, use_tqdm=False)
return outputs
def run(self, prompt: str) -> str:
prompt = self.format_prompt(prompt)
outputs = self.model.generate([prompt], **self.make_kwargs(do_sample=False))
pred = outputs[0].outputs[0].text
pred = pred.split("<|endoftext|>")[0]
return pred
def check_valid_length(self, text: str) -> bool:
self.load()
inputs = self.tokenizer(text)
return len(inputs.input_ids) <= self.max_input_length
def truncate_input(self, input) -> str:
return self.tokenizer.decode(self.tokenizer(input).input_ids[:self.max_input_length])
class SeqToSeqModel(EvalModel):
path_model: str
model: Optional[PreTrainedModel] = None
tokenizer: Optional[PreTrainedTokenizer] = None
device: str = "cuda"
load_8bit: bool = False
fp16: bool = False
def load(self):
if "flan-ul2" in self.path_model.lower():
self.max_input_length = 2048
if self.model is None:
args = {}
if self.load_8bit:
args.update(device_map="auto", load_in_8bit=True)
elif self.fp16:
args.update(device_map="auto", torch_dtype=torch.float16)
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.path_model, **args)
if self.fp16 or self.load_8bit:
self.model.eval()
else:
self.model.to(self.device)
if self.tokenizer is None:
self.tokenizer = AutoTokenizer.from_pretrained(self.path_model)
def run(self, prompt: str) -> str:
self.load()
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
outputs = self.model.generate(**inputs, max_new_tokens=self.max_output_length)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
def check_valid_length(self, text: str) -> bool:
self.load()
inputs = self.tokenizer(text)
return len(inputs.input_ids) <= self.max_input_length
def truncate_input(self, input) -> str:
return self.tokenizer.decode(self.tokenizer(input).input_ids[:self.max_input_length])
class OpenAIModel(EvalModel):
path_model: str
tokenizer: Optional[tiktoken.Encoding]
temperature: float = 0.0
max_input_length: int = 3996 # to allow 100 tokens for response
def load(self):
if self.tokenizer is None:
self.tokenizer = tiktoken.get_encoding("cl100k_base") # chatgpt/gpt-4
with open(self.path_model) as f:
info = json.load(f)
openai.api_key = info["key"]
self.model = info["model"]
def run(self, prompt: str) -> str:
self.load()
while True:
try:
messages = [{"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model=self.model,
messages=messages,
temperature=self.temperature,
)
output = response.choices[0].message["content"]
break
except Exception as e:
print(e)
time.sleep(5)
continue
return output
def check_valid_length(self, prompt: str) -> bool:
self.load()
tokens_per_message = 4
tokens_per_name = -1
messages = [{"role": "user", "content": prompt}]
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(self.tokenizer.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3
return num_tokens <= self.max_input_length
def truncate_input(self, input) -> str:
return self.tokenizer.decode(self.tokenizer.encode(input)[:self.max_input_length-8])
def select_model(model_name: str, **kwargs) -> EvalModel:
model_map = dict(
flan_t5_xl=SeqToSeqModel,
flan_t5_xxl = SeqToSeqModel,
flan_ul2 = SeqToSeqModel,
openai=OpenAIModel,
llama2_7b=VLLMModel,
llama2_13b=VLLMModel,
)
model_class = model_map.get(model_name)
if model_class is None:
raise ValueError(f"{model_name}. Choose from {list(model_map.keys())}")
return model_class(**kwargs)
def test_model(
prompt: str = "Identify the stance of the given sentence. Choose from 'support', 'attack', or 'neutral'.\nSentence: Menace II Society is a motion picture.\nLabel: ",
model_name: str = "flan_t5_xl",
path_model: str = "google/flan-t5-xl",
**kwargs,
):
model = select_model(model_name, path_model=path_model, **kwargs)
print(locals())
print(model.check_valid_length(prompt))
if not model.check_valid_length(prompt):
prompt = model.truncate_input(prompt)
print(f"Truncated prompt: {prompt}\n Length:{model.max_input_length}")
print(model.run(prompt))
if __name__ == "__main__":
Fire()