-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgrn_model.py
265 lines (213 loc) · 10.6 KB
/
grn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from keras import backend as K
from keras.engine.topology import Layer
from keras.models import Model
from keras.layers import Input, Embedding, Bidirectional, LSTM, MaxPooling2D
from keras.layers import Flatten, Dense, Dropout, BatchNormalization
class GatedRelevanceNetwork(Layer):
def __init__(self, output_dim,
weights_initializer="glorot_uniform",
bias_initializer="zeros", **kwargs):
self.output_dim = output_dim
self.weights_initializer = weights_initializer
self.bias_initializer = bias_initializer
super(GatedRelevanceNetwork, self).__init__(**kwargs)
def build(self, input_shape):
batch_size, len1, emb_dim = input_shape[0]
_, len2, _ = input_shape[1]
# Weights initialization
# Bilinear Tensor Product weights
self.Wb = self.add_weight(name='weights_btp',
shape=(self.output_dim, emb_dim, emb_dim),
initializer=self.weights_initializer,
trainable=True)
# Single Layer Network weights
self.Wd = self.add_weight(name='weights_sln',
shape=(2*emb_dim, self.output_dim),
initializer=self.weights_initializer,
trainable=True)
# Gate weights
self.Wg = self.add_weight(name='weights_gate',
shape=(2*emb_dim, self.output_dim),
initializer=self.weights_initializer,
trainable=True)
# Gate bias
self.bg = self.add_weight(name='bias_gate',
shape=(self.output_dim,),
initializer=self.bias_initializer,
trainable=True)
# General bias
self.b = self.add_weight(name='bias',
shape=(self.output_dim,),
initializer=self.bias_initializer,
trainable=True)
# Channel weights
self.u = self.add_weight(name="channel_weights",
shape=(self.output_dim, 1),
initializer=self.weights_initializer,
trainable=True)
super(GatedRelevanceNetwork, self).build(input_shape)
def call(self, x):
e1 = x[0]
e2 = x[1]
batch_size = K.shape(e1)[0]
# Usually len1 = len2 = max_seq_length
_, len1, emb_dim = K.int_shape(e1)
_, len2, _ = K.int_shape(e2)
# Repeating the matrices to generate all the combinations
ne1 = K.reshape(K.repeat_elements(K.expand_dims(e1, axis=2), len2, axis=2),
(batch_size, len1*len2, emb_dim))
ne2 = K.reshape(K.repeat_elements(K.expand_dims(e2, axis=1), len1, axis=1),
(batch_size, len1*len2, emb_dim))
# Repeating the second matrix to use in Bilinear Tensor Product
ne2_k = K.repeat_elements(K.expand_dims(ne2, axis=-1), self.output_dim, axis=-1)
# Bilinear tensor product
btp = K.sum(ne2_k * K.permute_dimensions(K.dot(ne1, self.Wb), (0,1,3,2)), axis=2)
btp = K.reshape(btp, (batch_size, len1, len2, self.output_dim))
# Concatenating inputs to apply Single Layer Network
e = K.concatenate([ne1, ne2], axis=-1)
# Single Layer Network
#sln = K.relu(K.dot(e, self.Wd))
sln = K.tanh(K.dot(e, self.Wd))
sln = K.reshape(sln, (batch_size, len1, len2, self.output_dim))
# Gate
g = K.sigmoid(K.dot(e, self.Wg) + self.bg)
g = K.reshape(g, (batch_size, len1, len2, self.output_dim))
# Gated Relevance Network
#s = K.reshape(K.dot(g*btp + (1-g)*sln + self.b, self.u), (batch_size, len1, len2))
s = K.dot(g*btp + (1-g)*sln + self.b, self.u)
return s
def compute_output_shape(self, input_shape):
shape1 = input_shape[0]
shape2 = input_shape[1]
return (shape1[0], shape1[1], shape2[1], 1)
def BiLSTM_encoder(input_shape, embeddings_dim, embeddings_matrix, word_to_index,
max_seq_length, trainable_embeddings, lstm_hidden_units):
"""input shape: (None, max_seq_length)
embedding_layer shape: (None, max_seq_length, embeddings_dim)
None refers to the minibatch size."""
X_input = Input(input_shape)
# Output shape: (batch_size, max_seq_length, embeddings_dim)
X = Embedding(len(word_to_index)+1,
embeddings_dim,
weights=[embeddings_matrix],
input_length=None,#max_seq_length,
trainable=trainable_embeddings)(X_input)
# Output shape: (batch_size, max_seq_length, lstm_hidden_units)
X = Bidirectional(LSTM(lstm_hidden_units, return_sequences=True),
merge_mode='concat')(X)
model = Model(inputs=[X_input], outputs=[X], name="BiLSTM_encoder")
return model
def gated_relevance_model(input_shape, embeddings_dim, embeddings_matrix,
word_to_index, max_seq_length, trainable_embeddings,
dropout, lstm_hidden_units, attention_channels,
pool_size, fc_hidden_units):
# TODO: Add docstring
encoder = BiLSTM_encoder(input_shape, embeddings_dim, embeddings_matrix,
word_to_index, max_seq_length, trainable_embeddings,
lstm_hidden_units)
X1_input = Input(input_shape, name="input_X1")
X2_input = Input(input_shape, name="input_X2")
# Encoding the inputs using the same weights
# Output shape: (batch_size, max_seq_length, lstm_hidden_units)
X1_encoded = encoder(X1_input)
X2_encoded = encoder(X2_input)
# Attention matrix
# Output shape: (batch_size, max_seq_length, max_seq_length, 1)
X = GatedRelevanceNetwork(attention_channels, name="grn")([X1_encoded, X2_encoded])
# Non-overlapping 2D max pooling
# Output shape: (batch_size, pooled_rows, pooled_cols, 1)
print("shape before pool", X.shape)
X = MaxPooling2D(pool_size=(pool_size, pool_size),
strides=(pool_size, pool_size),
padding='valid',
data_format="channels_last",
name="max_pool")(X)
X = Flatten()(X)
# Multi-Layer Perceptron
#X = Dropout(dropout)(X)
X = Dense(fc_hidden_units, activation="relu", name="mlp")(X)
X = Dense(2, activation="softmax", name="output")(X)
model = Model(inputs=[X1_input, X2_input], outputs=X, name="GRN_model")
return model
#encoder = Bidirectional(LSTM(lstm_hidden_units, return_sequences=True))
def gated_relevance_model2(input_shape, embeddings_dim, embeddings_matrix,
word_to_index, max_seq_length, trainable_embeddings,
dropout, lstm_hidden_units, attention_channels,
pool_size, fc_hidden_units):
# TODO: Add docstring
X1_input = Input(input_shape, name="input_X1")
X2_input = Input(input_shape, name="input_X2")
# Encoding the inputs using the same weights
# Output shape: (batch_size, max_seq_length, lstm_hidden_units)
X1 = Embedding(len(word_to_index)+1,
embeddings_dim,
weights=[embeddings_matrix],
input_length=max_seq_length,
trainable=trainable_embeddings)(X1_input)
X2 = Embedding(len(word_to_index)+1,
embeddings_dim,
weights=[embeddings_matrix],
input_length=max_seq_length,
trainable=trainable_embeddings)(X2_input)
# Output shape: (batch_size, max_seq_length, lstm_hidden_units)
X1_encoded = Bidirectional(LSTM(lstm_hidden_units, return_sequences=True))(X1)
X2_encoded = Bidirectional(LSTM(lstm_hidden_units, return_sequences=True))(X2)
# Attention matrix
# Output shape: (batch_size, max_seq_length, max_seq_length, 1)
X = GatedRelevanceNetwork(attention_channels, name="grn")([X1_encoded, X2_encoded])
# Non-overlapping 2D max pooling
# Output shape: (batch_size, pooled_rows, pooled_cols, 1)
print("shape before pool", X.shape)
X = MaxPooling2D(pool_size=(pool_size, pool_size),
strides=(pool_size, pool_size),
padding='valid',
data_format="channels_last",
name="max_pool")(X)
X = Flatten()(X)
# Multi-Layer Perceptron
#X = Dropout(dropout)(X)
X = Dense(fc_hidden_units, activation="tanh", name="mlp")(X)
X = Dense(2, activation="softmax", name="output")(X)
model = Model(inputs=[X1_input, X2_input], outputs=X, name="GRN_model")
return model
def gated_relevance_model3(input_shape, embeddings_dim, embeddings_matrix,
word_to_index, max_seq_length, trainable_embeddings,
dropout, lstm_hidden_units, attention_channels,
pool_size, fc_hidden_units):
# TODO: Add docstring
X1_input = Input(input_shape, name="input_X1")
X2_input = Input(input_shape, name="input_X2")
# Encoding the inputs using the same weights
# Output shape: (batch_size, max_seq_length, lstm_hidden_units)
embeddor = Embedding(len(word_to_index)+1,
embeddings_dim,
weights=[embeddings_matrix],
input_length=input_shape[0],
trainable=trainable_embeddings,
mask_zero=False)
X1 = embeddor(X1_input)
X2 = embeddor(X2_input)
encoder = Bidirectional(LSTM(lstm_hidden_units, return_sequences=True))
# Output shape: (batch_size, max_seq_length, lstm_hidden_units)
X1_encoded = encoder(X1)
X2_encoded = encoder(X2)
# Attention matrix
# Output shape: (batch_size, max_seq_length, max_seq_length, 1)
X = GatedRelevanceNetwork(attention_channels, name="grn")([X1_encoded, X2_encoded])
#X = BatchNormalization()(X)
# Non-overlapping 2D max pooling
# Output shape: (batch_size, pooled_rows, pooled_cols, 1)
print("shape before pool", X.shape)
X = MaxPooling2D(pool_size=(pool_size, pool_size),
strides=(pool_size, pool_size),
padding='valid',
data_format="channels_last",
name="max_pool")(X)
X = Flatten()(X)
# Multi-Layer Perceptron
#X = Dropout(dropout)(X)
X = Dense(fc_hidden_units, activation="tanh", name="mlp")(X)
X = Dropout(dropout)(X)
X = Dense(2, activation="softmax", name="output")(X)
model = Model(inputs=[X1_input, X2_input], outputs=X, name="GRN_model")
return model