- Install @readapt/text-engine package:
npm install @readapt/text-engine
<script src="path/to/yourCopyOf/readapt-text-engine.browser.js"></script>
This script add the variable textEngine
on the browser global scope.
Import entire module
import * as TextEngine from '@readapt/text-engine'
or individually
import { analyse, getPhonemes } from '@readapt/text-engine'
Entire module
const textEngine = require('@readapt/text-engine')
or
const { analyse, getPhonemes } = require('@readapt/text-engine')
For example analyse the sentence salut les amies:
const textAnalysis = analyse('salut les amies!', 'fr')
Output:
{
phonemes: [ 31, 1, 19, 33, 0, 0, 19, 8, 0, 0, 1, 20, 15, 0, 0, 0, 0],
syllables: [ [ 0, 1 ], [ 2, 4 ], [ 6, 8 ], [ 10, 10 ], [ 11, 14 ] ],
silentLetters: [ 4, 8, 13, 14 ],
liaison: [ [ 8, 10, 'z' ] ] // only when lang is fr
}
Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Text | s | a | l | u | t | l | e | s | a | m | i | e | s | ! | |||
Phonemes | 31 | 1 | 19 | 33 | 0 | 0 | 19 | 8 | 0 | 0 | 1 | 20 | 15 | 0 | 0 | 0 | 0 |
Syllables | [ | ] | [ | ] | [ | ] | [ ] | [ | ] | ||||||||
SilentLetters | ✓ | ✓️ | ✓ | ✓️ | |||||||||||||
Liaisons | z | ‿ |
Get fr
language phonemes list
const frPhonemes = getPhonemes('fr')
// Output
// [ '_', 'a', 'an', 'b', 'c', 'ch', ... , 'w', 'y', 'z', 'iy', 'tch', 'dg']
Then you can map the phonemes of the sentence with the phonemes of the lang
const phonemes = textAnalysis.phonemes.map(index => frPhonemes[index])
// Output
// [ 's', 'a', 'l', 'u', '_', '_', 'l', 'é', '_', '_', 'a', 'm', 'i', '_', '_', '_']
const textPhonemes = phonemes.join(' ')
// Output
// s a l u _ _ l é _ _ a m i _ _ _
To determine full pronunciation you need to add the liaisons if they are present
// salu lé ami
// z‿
// with liaisons
In English the analysis is very similar but without the field liaisons
.
Some words are more than one phoneme in this case the phonemes array may be contain a tuple of phonemes.
For example analyse the sentence John was subtle:
const textAnalysisEn = analyse('John was subtle', 'en')
Output:
{
phonemes: [ 19, 1, 0, 23, 0, 36, 1, 38, 0, 29, 3, 3, 31, [3, 21], 0 ],
syllables: [ [0, 3], [5, 7], [9, 11], [12, 14] ],
silentLetters: [2, 11]
}
Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Text | J | o | h | n | w | a | s | s | u | b | t | l | e | ||
Phonemes | 19 | 1 | 0 | 23 | 0 | 36 | 1 | 38 | 0 | 29 | 3 | 3 | 31 | [3,21] | 0 |
SilentLetters | ✓ | ✓ |
The sentence above, the grapheme l
has two phonemes ('ah', and 'l'). In this case the mapping phoneme index to phoneme
is a bit different because you need to call flat() first.
const enPhonemes = getPhonemes('en')
const phonemes = textAnalysisEn.phonemes.flat().map((index => enPhonemes[index]).join(' ')
// Output:
// jh aa _ n _ w aa z _ s ah ah t ah l _'