-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmetric_learning.py
56 lines (50 loc) · 2.1 KB
/
metric_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
from data_providers.utils import get_data_provider_by_name
from metric_learning.densenet import DenseNet
train_params_cifar = {
'batch_size': 128,
'n_epochs': 100,
'initial_learning_rate': 0.1,
'reduce_lr_epoch_1': 50, # epochs * 0.5
'reduce_lr_epoch_2': 75, # epochs * 0.75
'validation_set': True,
'validation_split': None, # None or float
'shuffle': 'every_epoch', # None, once_prior_train, every_epoch
'normalization': 'by_chanels', # None, divide_256, divide_255, by_chanels
}
densenet_params={
'growth_rate':12,
'depth':40,
'total_blocks':3,
'keep_prob':0.5, #keep probability for dropout. If keep_prob = 1, dropout will be disables
'weight_decay':1e-4,
'nesterov_momentum':0.9, #momentum for Nesterov optimizer
'model_type':'DenseNet-BC',
'bc_mode': True,
'dataset' : 'C100+',
'should_save_model':True,
'reduction':0.5,
'renew_logs': False,
'embedding_dim':64,
'display_iter':100,
'save_path':'/home/weilin/Downloads/densenet/saves/DenseNet-BC_growth_rate=12_depth=40_dataset_C100+/metric_learning.chkpt',
'logs_path':'/home/weilin/Downloads/densenet/saves/DenseNet-BC_growth_rate=12_depth=40_dataset_C100+/metric_learning',
'pretrained_model':'/home/weilin/Downloads/densenet/pretrained_model/DenseNet-BC_growth_rate=12_depth=40_dataset_C100+/model.chkpt',
'margin_multiplier':1.0,
}
data_provider = get_data_provider_by_name(densenet_params['dataset'], train_params_cifar)
model = DenseNet(data_provider, densenet_params)
training = True
feature_extract = False
if training:
print("Data provider train images: ", data_provider.train.num_examples)
model.load_pretrained_model()
model.train_all_epochs(train_params_cifar)
if feature_extract:
model.load_model()
print("Data provider test images: ", data_provider.test.num_examples)
feature_embeddings,gt_labels = model.feature_extracting(data_provider.test, batch_size=100)
print(feature_embeddings.shape)
np.save('feature_embedding.npy',feature_embeddings)
print(gt_labels.shape)
np.save('gt_labels.npy',gt_labels)