-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexisting_methods.py
375 lines (287 loc) · 12.9 KB
/
existing_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
from argparse import Namespace
import sys
import argparse
import math
import numpy as np
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch import autograd
import pickle as pkl
from models import ResNet_model, CNN
import torch.nn.functional as F
import glob
import tqdm
import torch.utils.data as utils
import json
from data import get_dataset
from utils import AttackPGD, add_gaussian_noise, pairing_loss
parser = argparse.ArgumentParser(description='Predicting with high correlation features')
# Directories
parser.add_argument('--data', type=str, default='datasets/',
help='location of the data corpus')
parser.add_argument('--root_dir', type=str, default='default/',
help='root dir path to save the log and the final model')
parser.add_argument('--save_dir', type=str, default='0/',
help='dir path (inside root_dir) to save the log and the final model')
parser.add_argument('--load_dir', type=str, default='',
help='dir path (inside root_dir) to load model from')
########################
### Baseline methods ###
# Vanilla MLE (simply run without any baseline method argument below)
# Projected gradient descent (PGD) based adversarial training
parser.add_argument('--pgd', action='store_true', help='PGD')
parser.add_argument('--nsteps', type=int, default=20, metavar='N',
help='num of steps for PGD')
parser.add_argument('--stepsz', type=int, default=2, metavar='N',
help='step size for 1st order adv training')
parser.add_argument('--epsilon', type=float, default=8,
help='number of pixel values (0-255) allowed for PGD which is normalized by 255 in the code')
# Input Gaussian noise
parser.add_argument('--inp_noise', type=float, default=0., help='Gaussian input noise with standard deviation specified here')
# Adversarial logit pairing (ALP/CLP)
parser.add_argument('--alp', action='store_true',
help='clean logit pairing')
parser.add_argument('--clp', action='store_true',
help='clean logit pairing')
parser.add_argument('--beta', type=float, default=0,
help='coefficient used for regularization term in ALP/CLP/VIB')
parser.add_argument('--anneal_beta', action='store_true', help='anneal beta from 0.0001 to specified value gradually')
# Variational Information Bottleneck (VIB)
parser.add_argument('--vib', action='store_true',
help='use Variational Information Bottleneck')
# Adaptive batch norm
parser.add_argument('--bn_eval', action='store_true',
help='adapt BN stats during eval')
### Baseline methods ###
########################
# dataset and architecture
parser.add_argument('--dataset', type=str, default='fgbg_cmnist_cpr0.5-0.5',
help='dataset name')
parser.add_argument('--arch', type=str, default='resnet',
help='arch name (resnet,cnn)')
parser.add_argument('--depth', type=int, default=56,
help='number of resblocks if using resnet architecture')
parser.add_argument('--k', type=int, default=1,
help='widening factor for wide resnet architecture')
# Optimization hyper-parameters
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--bs', type=int, default=128, metavar='N',
help='batch size')
parser.add_argument('--bn', action='store_true',
help='Use Batch norm')
parser.add_argument('--noaffine', action='store_true',
help='no affine transformations')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate ')
parser.add_argument('--epochs', type=int, default=200,
help='upper epoch limit')
parser.add_argument('--init', type=str, default="he")
parser.add_argument('--wdecay', type=float, default=0.0001,
help='weight decay applied to all weights')
# meta specifications
parser.add_argument('--validation', action='store_true',
help='Compute accuracy on validation set at each epoch')
parser.add_argument('--cuda', action='store_false',
help='use CUDA')
parser.add_argument('--gpu', nargs='+', type=int, default=[0])
args = parser.parse_args()
args.root_dir = os.path.join('runs/', args.root_dir)
args.save_dir = os.path.join(args.root_dir, args.save_dir)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
log_dir = args.save_dir + '/'
with open(args.save_dir + '/config.txt', 'w') as f:
json.dump(args.__dict__, f, indent=2)
with open(args.save_dir + '/log.txt', 'w') as f:
f.write('python ' + ' '.join(s for s in sys.argv) + '\n')
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(str(i) for i in args.gpu)
# Set the random seed manually for reproducibility.
use_cuda = torch.cuda.is_available()
torch.manual_seed(args.seed)
if use_cuda:
torch.cuda.manual_seed(args.seed)
###############################################################################
# Load data
###############################################################################
print('==> Preparing data..')
trainloader, validloader, testloader, nb_classes, dim_inp = get_dataset(args)
###############################################################################
# Build the model
###############################################################################
epoch = 0
if args.load_dir=='':
inp_channels=3
print('==> Building model..')
if args.arch == 'resnet':
model0 = ResNet_model(bn= args.bn, num_classes=nb_classes, depth=args.depth,\
inp_channels=inp_channels, k=args.k, affine=not args.noaffine, inp_noise=args.inp_noise, VIB=args.vib)
elif args.arch == 'cnn':
model0 = CNN(bn= args.bn, affine=not args.noaffine, num_classes=nb_classes, inp_noise=args.inp_noise, VIB=args.vib)
else:
with open(args.root_dir + '/' + args.load_dir + '/best_model.pt', 'rb') as f:
best_state = torch.load(f)
model0 = best_state['model']
epoch = best_state['epoch']
print('==> Loading model from epoch ', epoch)
params = list(model0.parameters())
model = torch.nn.DataParallel(model0, device_ids=range(len(args.gpu)))
adv_PGD_config = config = {
'epsilon': args.epsilon / (255),
'num_steps': args.nsteps,
'step_size': args.stepsz / (255.),
'random_start': True
}
AttackPGD_ = AttackPGD(adv_PGD_config)
nb = 0
if args.init == 'he':
for m in model.modules():
if isinstance(m, nn.Conv2d):
nb += 1
# print ('Update init of ', m)
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d) and not args.noaffine:
# print ('Update init of ', m)
m.weight.data.fill_(1)
m.bias.data.zero_()
print( 'Number of Conv layers: ', (nb))
if use_cuda:
model.cuda()
total_params = sum(np.prod(x.size()) if len(x.size()) > 1 else x.size()[0] for x in model.parameters())
print('Args:', args)
print( 'Model total parameters:', total_params)
with open(args.save_dir + '/log.txt', 'a') as f:
f.write(str(args) + ',total_params=' + str(total_params) + '\n')
criterion = nn.CrossEntropyLoss()
###############################################################################
# Training/Testing code
###############################################################################
def test(loader, model, save=False, epoch=0):
global best_acc, args
if args.bn_eval: # forward prop data twice to update BN running averages
model.train()
for _ in range(2):
for batch_idx, (inputs, targets) in enumerate(loader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs), Variable(targets)
_ = (model(inputs, train=False))
model.eval()
correct, total = 0,0
tot_iters = len(loader)
for batch_idx in tqdm.tqdm(range(tot_iters), total=tot_iters):
inputs, targets = next(iter(loader))
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
with torch.no_grad():
inputs, targets = Variable(inputs), Variable(targets)
outputs = (model(inputs, train=False))
_, predicted = torch.max(nn.Softmax(dim=1)(outputs).data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
# Save checkpoint.
acc = 100.*float(correct)/float(total)
if save and acc > best_acc:
best_acc = acc
print('Saving best model..')
state = {
'model': model0,
'epoch': epoch
}
with open(args.save_dir + '/best_model.pt', 'wb') as f:
torch.save(state, f)
return acc
def train(epoch):
global trainloader, optimizer, args, model, best_loss
model.train()
correct = 0
total = 0
total_loss, reg_loss, tot_regularization_loss = 0, 0, 0
optimizer.zero_grad()
tot_iters = len(trainloader)
for batch_idx in tqdm.tqdm(range(tot_iters), total=tot_iters):
inputs, targets = next(iter(trainloader))
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs = Variable(inputs)
if args.pgd:
outputs = AttackPGD_(inputs, targets, model)
loss = criterion(outputs, targets)
elif args.alp:
outputs_adv = AttackPGD_(inputs, targets, model)
loss_adv = criterion(outputs_adv, targets)
outputs = (model(inputs))
loss_clean = criterion(outputs, targets)
loss = loss_clean + loss_adv
reg_loss = pairing_loss(outputs_adv, outputs)
elif args.clp:
outputs = (model(inputs))
loss_clean = criterion(outputs, targets)
loss = loss_clean
reg_loss = pairing_loss(outputs, outputs, stochastic_pairing = True)
elif args.vib:
outputs, mn, logvar = model(inputs)
loss = criterion(outputs, targets)
reg_loss = -0.5 * torch.sum(1 + logvar - mn.pow(2) - logvar.exp())/inputs.size(0)
else:
outputs = (model(inputs))
loss = criterion(outputs, targets)
tot_regularization_loss += reg_loss
total_loss_ = loss + args.beta* reg_loss
total_loss_.backward() # retain_graph=True
total_loss += loss.data.cpu()
_, predicted = torch.max(nn.Softmax(dim=1)(outputs).data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
# nn.utils.clip_grad_norm_(model.parameters(), 0.1)
optimizer.step()
optimizer.zero_grad()
acc = 100.*correct/total
return total_loss/(batch_idx+1), acc, tot_regularization_loss/(batch_idx+1)
optimizer = torch.optim.Adam(params, lr=args.lr, weight_decay=args.wdecay)
best_acc, best_loss =0, np.inf
train_loss_list, train_acc_list, valid_acc_list, test_acc_list, reg_loss_list = [], [], [], [], []
if args.anneal_beta:
beta_ = args.beta
args.beta = 0.0001
def train_fn():
global epoch, args, best_loss, best_acc
while epoch<args.epochs:
epoch+=1
loss, train_acc, regularization_loss= train(epoch)
train_loss_list.append(loss)
train_acc_list.append(train_acc)
reg_loss_list.append(regularization_loss)
test_acc = test(testloader, model=model, save=True, epoch=epoch)
test_acc_list.append(test_acc)
if args.validation:
val_acc = test(validloader, model=model, save=False)
valid_acc_list.append(val_acc)
with open(args.save_dir + "/val_acc.pkl", "wb") as f:
pkl.dump(valid_acc_list, f)
print('val-acc acc {:3.2f}'.format(val_acc))
with open(args.save_dir + "/train_loss.pkl", "wb") as f:
pkl.dump(train_loss_list, f)
with open(args.save_dir + "/train_acc.pkl", "wb") as f:
pkl.dump(train_acc_list, f)
with open(args.save_dir + "/test_acc.pkl", "wb") as f:
pkl.dump(test_acc_list, f)
with open(args.save_dir + "/reg_loss_list.pkl", "wb") as f:
pkl.dump(reg_loss_list, f)
status = 'Epoch {}/{} | Loss {:3.4f} | acc {:3.2f} | test-acc {:3.2f} | reg_loss : {:3.4f}'.\
format( epoch, args.epochs, loss, train_acc, test_acc, regularization_loss)
print (status)
with open(args.save_dir + '/log.txt', 'a') as f:
f.write(status + '\n')
print('-' * 89)
if args.anneal_beta:
args.beta = min([beta_, 2.* args.beta])
print('beta ', args.beta)
train_fn()
status = '| End of training | best test acc {:3.4f} '.format(best_acc)
print(status)
with open(args.save_dir + '/log.txt', 'a') as f:
f.write(status + '\n')