-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
35 lines (25 loc) · 969 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import cv2
cap = cv2.VideoCapture(0)
cap.set(3, 720)
cap.set(4,1080)
class_names = []
class_file = 'coco.names'
with open(class_file, 'rt') as f:
class_names = f.read().rstrip('\n').split('\n')
config_path = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
weights_path = 'frozen_inference_graph.pb'
net = cv2.dnn_DetectionModel(weights_path, config_path)
net.setInputSize(320,320)
net.setInputScale(1.0/ 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)
while True:
success, img = cap.read()
classIds, confs, bbox = net.detect(img,confThreshold=0.5)
print(classIds, bbox)
if len(classIds) != 0:
for classId, confidence, box in zip(classIds.flatten(), confs.flatten(),bbox):
cv2.rectangle(img,box,color=(255,0,0),thickness=3)
cv2.putText(img, class_names[classId-1].upper(), (box[0]+10,box[1]+30), cv2.FONT_HERSHEY_COMPLEX, 2,(255,0,0,2))
cv2.imshow("Output", img)
cv2.waitKey(0)