forked from maxsitt/insect-detect
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathframe_capture.py
111 lines (90 loc) · 4.28 KB
/
frame_capture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/env python3
'''
Author: Maximilian Sittinger (https://github.com/maxsitt)
Website: https://maxsitt.github.io/insect-detect-docs/
License: GNU GPLv3 (https://choosealicense.com/licenses/gpl-3.0/)
This Python script does the following:
- save HQ frames (e.g. 1920x1080 or 3840x2160 px) to .jpg at specified time interval
- optional arguments:
"-min [min]" (default = 2) set recording time in minutes
-> e.g. "-min 5" for 5 min recording time
"-4k" (default = 1080p) save HQ frames in 4K resolution (3840x2160 px)
"-lq" additionally save downscaled LQ frames (e.g. 320x320 px)
based on open source scripts available at https://github.com/luxonis
'''
import argparse
import time
from datetime import datetime
from pathlib import Path
import cv2
import depthai as dai
# Define optional arguments
parser = argparse.ArgumentParser()
parser.add_argument("-min", "--min_rec_time", type=int, choices=range(1, 721), default=2,
help="set record time in minutes")
parser.add_argument("-4k", "--four_k_resolution", action="store_true",
help="save HQ frames in 4K resolution; default = 1080p")
parser.add_argument("-lq", "--save_lq_frames", action="store_true",
help="additionally save downscaled LQ frames")
args = parser.parse_args()
# Set capture frequency in seconds
# 'CAPTURE_FREQ = 0.8' (0.2 for 4K) saves ~58 frames per minute to .jpg (RPi Zero 2)
CAPTURE_FREQ = 0.8
if args.four_k_resolution:
CAPTURE_FREQ = 0.2
# Create depthai pipeline
pipeline = dai.Pipeline()
# Create and configure camera node and define output(s)
cam_rgb = pipeline.create(dai.node.ColorCamera)
#cam_rgb.setImageOrientation(dai.CameraImageOrientation.ROTATE_180_DEG)
cam_rgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_4_K)
if not args.four_k_resolution:
cam_rgb.setIspScale(1, 2) # downscale 4K to 1080p HQ frames (1920x1080 px)
cam_rgb.setFps(25) # frames per second available for focus/exposure
if args.save_lq_frames:
cam_rgb.setPreviewSize(320, 320) # downscaled LQ frames
cam_rgb.setPreviewKeepAspectRatio(False) # "squeeze" frames (16:9) to square (1:1)
cam_rgb.setInterleaved(False) # planar layout
xout_rgb = pipeline.create(dai.node.XLinkOut)
xout_rgb.setStreamName("frame")
cam_rgb.video.link(xout_rgb.input) # HQ frame
if args.save_lq_frames:
xout_lq = pipeline.create(dai.node.XLinkOut)
xout_lq.setStreamName("frame_lq")
cam_rgb.preview.link(xout_lq.input) # LQ frame
# Connect to OAK device and start pipeline in USB2 mode
with dai.Device(pipeline, maxUsbSpeed=dai.UsbSpeed.HIGH) as device:
# Create output queue(s) to get the frames from the output(s) defined above
q_frame = device.getOutputQueue(name="frame", maxSize=4, blocking=False)
if args.save_lq_frames:
q_frame_lq = device.getOutputQueue(name="frame_lq", maxSize=4, blocking=False)
# Create folders to save the frames
rec_start = datetime.now().strftime("%Y%m%d_%H-%M")
save_path = f"insect-detect/frames/{rec_start[:8]}/{rec_start}"
Path(f"{save_path}").mkdir(parents=True, exist_ok=True)
if args.save_lq_frames:
Path(f"{save_path}/LQ_frames").mkdir(parents=True, exist_ok=True)
# Create start_time variable to set recording time
start_time = time.monotonic()
# Get recording time in min from optional argument (default: 2)
rec_time = args.min_rec_time * 60
print(f"Recording time: {args.min_rec_time} min")
# Record until recording time is finished
while time.monotonic() < start_time + rec_time:
# Get HQ (+ LQ) frames and save to .jpg at specified time interval
timestamp = datetime.now().strftime("%Y%m%d_%H-%M-%S.%f")
hq_path = f"{save_path}/{timestamp}.jpg"
hq_frame = q_frame.get().getCvFrame()
cv2.imwrite(hq_path, hq_frame)
if args.save_lq_frames:
lq_path = f"{save_path}/LQ_frames/{timestamp}_LQ.jpg"
lq_frame = q_frame_lq.get().getCvFrame()
cv2.imwrite(lq_path, lq_frame)
time.sleep(CAPTURE_FREQ)
# Print number and path of saved frames to console
frames_hq = len(list(Path(f"{save_path}").glob("*.jpg")))
if args.save_lq_frames:
frames_lq = len(list(Path(f"{save_path}/LQ_frames").glob("*.jpg")))
print(f"Saved {frames_hq} HQ and {frames_lq} LQ frames to {save_path}.")
else:
print(f"Saved {frames_hq} HQ frames to {save_path}.")