-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
279 lines (222 loc) · 13.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
import numpy as np
from statistics import mean
import wandb
from utils import set_train_bar_description, update_train_running_results, extract_index_features, collate_fn
class Trainer():
def __init__(self, cfg, model, train_dataloader, optimizer, scheduler, criterion, classic_val_dataset, relative_val_dataset, **kwargs):
self.num_epochs = cfg.num_epochs
self.dataset = cfg.dataset
if self.dataset == 'fiq':
self.idx_to_dress_mapping = kwargs['idx_to_dress_mapping']
self.model = model
self.train_dataloader = train_dataloader
self.optimizer = optimizer
self.scheduler = scheduler
self.device = cfg.device
self.use_amp = cfg.use_amp
self.criterion = criterion
self.encoder = cfg.encoder
self.classic_val_dataset = classic_val_dataset
self.relative_val_dataset = relative_val_dataset
self.validation_frequency = cfg.validation_frequency
self.save_path = cfg.save_path
if self.use_amp:
self.scaler = torch.cuda.amp.GradScaler()
if self.encoder == 'text' or self.encoder == 'neither':
self.store_val_features = kwargs
def train(self):
best_score = 0
self.model.to(self.device)
for epoch in range(self.num_epochs):
self.train_epoch(epoch)
if epoch % self.validation_frequency == 0:
results_dict = {}
if self.dataset == 'cirr':
results = self.eval_cirr()
group_recall_at1, group_recall_at2, group_recall_at3, recall_at1, recall_at5, recall_at10, recall_at50 = results
results_dict = {
'group_recall_at1': group_recall_at1,
'group_recall_at2': group_recall_at2,
'group_recall_at3': group_recall_at3,
'recall_at1': recall_at1,
'recall_at5': recall_at5,
'recall_at10': recall_at10,
'recall_at50': recall_at50,
'mean(R@5+R_s@1)': (group_recall_at1 + recall_at5) / 2,
'arithmetic_mean': mean(results),
}
print('recall_inset_top1_correct_composition', group_recall_at1)
print('recall_inset_top2_correct_composition', group_recall_at2)
print('recall_inset_top3_correct_composition', group_recall_at3)
print('recall_top1_correct_composition', recall_at1)
print('recall_top5_correct_composition', recall_at5)
print('recall_top10_correct_composition', recall_at10)
print('recall_top50_correct_composition', recall_at50)
elif self.dataset == 'fiq':
results10, results50 = self.eval_fiq()
for i in range(len(results10)):
results_dict[f'{self.idx_to_dress_mapping[i]}_recall_at10'] = results10[i]
results_dict[f'{self.idx_to_dress_mapping[i]}_recall_at50'] = results50[i]
print(f'{self.idx_to_dress_mapping[i]}_recall_at10: {results10[i]}')
print(f'{self.idx_to_dress_mapping[i]}_recall_at50: {results50[i]}')
print('average_recall_at10', mean(results10))
print('average_recall_at50', mean(results50))
results_dict.update({
'average_recall_at10': mean(results10),
'average_recall_at50': mean(results50),
'average_recall': (mean(results10) + mean(results50)) / 2
})
wandb.log(results_dict)
if self.dataset == 'cirr':
score = mean(results)
elif self.dataset == 'fiq':
score = results_dict['average_recall']
if score > best_score:
best_score = score
self.save_checkpoint(self.save_path)
def train_epoch(self, epoch):
self.model.train()
train_running_results = {'images_in_epoch': 0, 'accumulated_train_loss': 0}
train_bar = tqdm(self.train_dataloader, ncols=150)
iters = len(train_bar)
for idx, (reference_images, target_images, captions) in enumerate(train_bar):
images_in_batch = reference_images.size(0)
self.optimizer.zero_grad()
reference_images = reference_images.to(self.device, non_blocking=True)
target_images = target_images.to(self.device, non_blocking=True)
if not self.use_amp:
logits = self.model(reference_images, captions, target_images)
ground_truth = torch.arange(images_in_batch, dtype=torch.long, device=self.device)
loss = self.criterion(logits, ground_truth)
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=5)
self.optimizer.step()
self.scheduler.step(epoch + idx / iters)
else:
with torch.cuda.amp.autocast():
logits = self.model(captions, reference_images, target_images)
ground_truth = torch.arange(images_in_batch, dtype=torch.long, device=self.device)
loss = self.criterion(logits, ground_truth)
self.scaler.scale(loss).backward()
self.scaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=5)
self.scaler.step(self.optimizer)
self.scheduler.step(epoch + idx / iters)
self.scaler.update()
update_train_running_results(train_running_results, loss, images_in_batch)
set_train_bar_description(train_bar, epoch, self.num_epochs, train_running_results)
# wandb to log
train_epoch_loss = float(train_running_results['accumulated_train_loss'] / train_running_results['images_in_epoch'])
wandb.log({'train_epoch_loss': train_epoch_loss})
def get_val_index_features(self, index=None):
with torch.no_grad():
if (self.encoder == 'both' or self.encoder == 'image') and self.dataset == 'cirr':
val_index_features, val_index_names, _ = extract_index_features(self.classic_val_dataset, self.model, return_local=False)
elif self.dataset == 'cirr':
val_index_features, val_index_names, _ = self.store_val_features['val_index_features'], self.store_val_features['val_index_names'], self.store_val_features['val_total_index_features']
elif (self.encoder == 'both' or self.encoder == 'image') and self.dataset == 'fiq':
val_index_features, val_index_names, _ = extract_index_features(self.classic_val_dataset[index], self.model, return_local=False)
elif self.dataset == 'fiq':
val_index_features, val_index_names, _ = self.store_val_features['val_index_features'][index], self.store_val_features['val_index_names'][index], self.store_val_features['val_total_index_features'][index]
return val_index_features, val_index_names, _
def eval_cirr(self):
self.model.eval()
val_index_features, val_index_names, _ = self.get_val_index_features()
results = self.compute_cirr_val_metrics(val_index_names, val_index_features)
return results
def eval_fiq(self):
self.model.eval()
recalls_at10 = []
recalls_at50 = []
for idx in self.idx_to_dress_mapping:
val_index_features, val_index_names, val_index_total_features = self.get_val_index_features(index=idx)
recall_at10, recall_at50 = self.compute_fiq_val_metrics(val_index_names, val_index_features, val_index_total_features, idx)
recalls_at10.append(recall_at10)
recalls_at50.append(recall_at50)
results_dict = {}
for i in range(len(recalls_at10)):
results_dict[f'{self.idx_to_dress_mapping[i]}_recall_at10'] = recalls_at10[i]
results_dict[f'{self.idx_to_dress_mapping[i]}_recall_at50'] = recalls_at50[i]
wandb.log(results_dict)
return recalls_at10, recalls_at50
def get_val_dataloader(self, index=None):
if index == None:
dataset = self.relative_val_dataset
else:
dataset = self.relative_val_dataset[index]
relative_val_loader = DataLoader(dataset=dataset, batch_size=32, num_workers=8, pin_memory=True, collate_fn=collate_fn)
return relative_val_loader
def compute_fiq_val_metrics(self, val_index_names, val_index_features, val_total_index_features, index):
relative_val_loader = self.get_val_dataloader(index)
target_names = []
predicted_features = []
for batch_reference_names, batch_target_names, captions, reference_images in tqdm(relative_val_loader):
flattened_captions: list = np.array(captions).T.flatten().tolist()
input_captions = [
f"{flattened_captions[i].strip('.?, ').capitalize()} and {flattened_captions[i + 1].strip('.?, ')}" for
i in range(0, len(flattened_captions), 2)]
with torch.no_grad():
reference_images = reference_images.to(self.device)
batch_predicted_features = self.model.combine_features(reference_images, input_captions)
predicted_features.append(batch_predicted_features / batch_predicted_features.norm(dim=-1, keepdim=True))
target_names.extend(batch_target_names)
predicted_features = torch.cat(predicted_features, dim=0)
val_index_features = val_index_features / val_index_features.norm(dim=-1, keepdim=True)
distances = 1 - predicted_features @ val_index_features.T
results = self.compute_results(distances, val_index_names, target_names)
return results
def compute_cirr_val_metrics(self, val_index_names, val_index_features):
relative_val_loader = self.get_val_dataloader()
target_names = []
group_members = []
reference_names = []
predicted_features = []
for batch_reference_names, batch_target_names, captions, batch_group_members, reference_images in tqdm(relative_val_loader):
batch_group_members = np.array(batch_group_members).T.tolist()
with torch.no_grad():
reference_images = reference_images.to(self.device)
batch_predicted_features = self.model.combine_features(reference_images, captions)
predicted_features.append(batch_predicted_features / batch_predicted_features.norm(dim=-1, keepdim=True))
target_names.extend(batch_target_names)
group_members.extend(batch_group_members)
reference_names.extend(batch_reference_names)
predicted_features = torch.cat(predicted_features, dim=0)
val_index_features = val_index_features / val_index_features.norm(dim=-1, keepdim=True)
distances = 1 - predicted_features @ val_index_features.T
results = self.compute_results(distances, val_index_names, target_names, reference_names, group_members)
return results
def compute_results(self, distances, val_index_names, target_names, reference_names=None, group_members=None):
sorted_indices = torch.argsort(distances, dim=-1).cpu()
sorted_index_names = np.array(val_index_names)[sorted_indices]
if reference_names == None:
labels = torch.tensor(
sorted_index_names == np.repeat(np.array(target_names), len(val_index_names)).reshape(len(target_names), -1))
recall_at10 = (torch.sum(labels[:, :10]) / len(labels)).item() * 100
recall_at50 = (torch.sum(labels[:, :50]) / len(labels)).item() * 100
return recall_at10, recall_at50
elif reference_names != None:
reference_mask = torch.tensor(
sorted_index_names != np.repeat(np.array(reference_names), len(val_index_names)).reshape(len(target_names), -1))
sorted_index_names = sorted_index_names[reference_mask].reshape(sorted_index_names.shape[0],
sorted_index_names.shape[1] - 1)
labels = torch.tensor(
sorted_index_names == np.repeat(np.array(target_names), len(val_index_names) - 1).reshape(len(target_names), -1))
group_members = np.array(group_members)
group_mask = (sorted_index_names[..., None] == group_members[:, None, :]).sum(-1).astype(bool)
group_labels = labels[group_mask].reshape(labels.shape[0], -1)
assert torch.equal(torch.sum(labels, dim=-1).int(), torch.ones(len(target_names)).int())
assert torch.equal(torch.sum(group_labels, dim=-1).int(), torch.ones(len(target_names)).int())
# Compute the metrics
recall_at1 = (torch.sum(labels[:, :1]) / len(labels)).item() * 100
recall_at5 = (torch.sum(labels[:, :5]) / len(labels)).item() * 100
recall_at10 = (torch.sum(labels[:, :10]) / len(labels)).item() * 100
recall_at50 = (torch.sum(labels[:, :50]) / len(labels)).item() * 100
group_recall_at1 = (torch.sum(group_labels[:, :1]) / len(group_labels)).item() * 100
group_recall_at2 = (torch.sum(group_labels[:, :2]) / len(group_labels)).item() * 100
group_recall_at3 = (torch.sum(group_labels[:, :3]) / len(group_labels)).item() * 100
return group_recall_at1, group_recall_at2, group_recall_at3, recall_at1, recall_at5, recall_at10, recall_at50
def save_checkpoint(self, path):
torch.save(self.model.state_dict(), path)