{ "cells": [ { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4XOWZ9/HvLbn3IjfkDrZxN8aFXtZgjAk2b0LABPYFloSFXUKyhOzCpkBIsimEFBJIQoANIQUIIUGAiYHQi8E2toxlMAg3ybJsuclyVbvfP2asV8gqx7LOnCm/z3XN5TkzZ2Z+Bwndc57nOc9j7o6IiAhAVtQBREQkeagoiIhIHRUFERGpo6IgIiJ1VBRERKSOioKIiNRRUZCMZmadzWyhme00s/+MOk9rmdmlZlZuZm+a2TFR55HUpaIgKc/MFpjZ22a218y2xu//m5lZgJefA0wChrj7D9s4Vwcze9zM1puZm9lZDZ43M/uBmW2P334YMPNh3P1RICe+eclRRpcMpqIgKc3MvgL8DLgTGAgMAK4DTgU6BHiLPsB6d98TUsTXgSuA0kaeuxa4CJhMrDB9CvjX1n6Qu1cBHwJ9W/seIioKkrLMrCdwB/Bv7v64u1d4zHJ3v9zdDwZ4m3ZAbSPvvd7MbjazlfFmmUfNrNOR5HP3Snf/qbu/DtQ0ssuVwF3uXuzum4C7gKsaey8zu8rM3jCzn8fzfGBmsxrZtTZ+TCKtoqIgqexkoCPwZGtebGbtgbOAjU3scgkwBxhB7Jv8VfHXDTWzXc3cPhcwwnggv952fvyxpswE1hJrJroNeMLM+jTYpwg4xcy6Bswg8gkqCpLKcoBt7l596IF4R+suM9tvZmc09UIzmwLsA2YDtzex293uXuLuO4CngCkA7r7R3Xs1c/tjwPzdgPJ62+VAt2b6FbYCP3X3qngfwhrgggb7/BQYBOw2s08HzCFSR0VBUtl2IMfM6ppL3P0Ud+8Vf67J3293XwF0B94CvtzEbvX7AfYR+yPelvYAPept9wD2eNOzVG5q8NwGoOFIo6uB3UAfd3+izZJKxlBRkFT2FnAQmN+aF7v7AeBZYNyRvC7efLSnmdvlAd+qgFgn8yGT4481JbfBWcRQoKTBPmOBl9y9HJFWUFGQlOXuu4BvAfea2cVm1s3MsuJNQ0Hb1A8SbJRS/c/d6O7dmrn94dC+ZtaxXgd1BzPrVO8P+++Am8wsN35twVeA39Z77Xozu6reR/cHbjSz9mb2WWIFYGGDeO3jxyTSKhqlICnN3X9oZpuA/yT2R3Yvsc7Y/wLeDPAWtYT75WgNMCx+f1H83xHAeuDXwEjgvfjj98cfw8w6EBtaurjee70NjAK2AVuAi919e4PPy6aR0VQiQZkW2ZFMZmazgYeBsfEO5aRgZqcB/+7ul8W3rwI+7+6nNfOazsSui3jA3e9NSFBJO2o+kkz3MvACUGBmN0ecpY67v36oIARhZpcQ63jeAjwWWjBJezpTkLRlZgX8/6ab+v61frt/KghypiDSFlQURESkjpqPRESkTsqNPsrJyfHhw4dHHUNEJKUsW7Zsm7v3a2m/lCsKw4cPZ+nSpVHHEBFJKWa2Ich+aj4SEZE6KgoiIlJHRUFEROqoKIiISB0VBRERqRNaUTCzB+OLqK9q4nkzs7vNrDC+5OHUsLKIiEgwYZ4p/JbYUoZNOZ/YjI+jiC1g/ssQs4iISAChXafg7q+a2fBmdpkP/C6+ktRiM+tlZoPcfXNYmUTC5u6sLC7n9cJtHKyqiTrOYUYN6M7Zx/enW8fm/9c/UFXD6x9tY+WmctBUOElj1tgBTB7SK9TPiPLitVxii4wfUhx/7LCiYGbXEjubYOjQoQkJJxJUdU0tS9bvZFFBKc8VlFJSfgCAJldajsihv+0dsrM4bVQOc8YP5JxxA+jTNbbGUMWBKl78YCvPFWzhpTVb2VcZK2rJdhyZrH+PTmldFBr7VWv0K4m73wfcBzBt2jR9bZGksLXiAHct+pDnVpeyc18VHdtlccboftw0ewyzju9P765HtKBb6GpqnXc37uTvq0pZVFDKix9sJesJmD68D507ZPNm4XYqa2rJ6daRi07IZc74gZw0si8d2mk8SiaJsigUA0PqbQ/m8PVmRZLSweoarv3dMt7fvJs5EwYyZ/xAzhjdj64tNMtEKTvLmD68D9OH9+HrF4yloGQ3zxWUsqhgC1t2H+DKU4Zx3viBnDC0N9lZOj3IVFH+BucBN5jZI8BMoFz9CRImd+e9TeW8Ubidk4/ty5SjOA2/46nVrCjaxa+umMqcCYPaMGVimBkTcnsyIbcnN80eE3UcSSKhFQUz+xNwFpBjZsXAbcQWFcfdf0VswfG5QCGwD7g6rCySuWpqnSXrd8Tb+7ewadd+INZOfuXJw7n5vDEtdro29NjSIv7w9kauO/PYlCwIIs0Jc/RRs0sJxkcd/XtYny+Z7UBVDf+z8H2eWbmZ7Xsr6dAuizNG5fClc0Zx8si+3P/aWh56az3PFZTy7YsmMGvsgEDv+15xOV//2ypOPa4vN88eHe5BiEQgeRtARY7Cn5cW8bu3NnDBpEHMnTCIs8Z8sr3/W/MnMG9KLrc+sZJrHlrKBRMHcdu8cfTv3qnJ99y5t5Lrfr+MnK4duHvBCbTLVgespB8VBUk77s6f3ili3KAe/OKyE7AmxlSeOKw3T3/xdH79ysf8/MVCXvuojH8981jmThzEiJyun9i3pta58ZHllO05yOPXnUzfbh0TcSgiCaeiIGln1abdrN68m2/PH99kQTikQ7ssvjhrFHMnDeKbT67izkVruHPRGkYP6Mac8QOZPX4g44/pwY+fX8NrH23jB5+ZyKTB4Y4TF4mSioKknT8t2Uin9lnMm5Ib+DXH9uvGHz5/Ept27ee5glL+vqqUX7xUyN0vFpLbqzObdu3nshlDuHS6Lp6U9KaiIGllX2U1eStKmDtxED07tz/i1+f26szVp47g6lNHsH3PQV54fwt/X1XK2EE9uH3e+BASiyQXFQVJK0+v3Myeg9VcNuPov9H37daRS6cP1dmBZBQNn5C08uiSIo7t15Vpw3pHHUUkJakoSNr4cEsFyzbsZMH0oS12MItI41QUJG08uqSI9tnGp6cG72AWkU9SUZC0cLC6hifeLWb2uIG6hkDkKKgoSFp4rmALO/dVcen0IS3vLCJNUlGQtPDIko3k9urMacflRB1FJKWpKEjK27h9H28UbufS6UPI0joAIkdFRUFS3qNLN5Jl8Nlpg6OOIpLyVBQkpVXX1PLnpcWcNaY/g3p2jjqOSMrTFc2SkmprneVFO3l8WTFbKw6yQB3MIm1CRUFSRlVNLYvXbufvq0p5fvUWtlYcpH22ceHkYzj7+P5RxxNJCyoKkhKeeLeY2/MK2H2gms7tszn7+H6cN34gZx/fnx6djnziOxFpnIqCJL3aWudHi9ZwTK/O3DV7DKePyqFT++yoY4mkJXU0S9JbtnEnJeUHuO7MYzl33AAVBJEQqShI0stbUUKn9lmcO25A1FFE0p6KgiS1qppannlvM7PGDqBrR7V2ioRNRUGS2huF29ixt5L5k4+JOopIRlBRkKSWt6KEHp3aceaYflFHEckIKgqStA5U1bCooJQ5EwbSsZ06l0USQUVBktaLH2xlb2UN86do0RyRRFFRkKT15IpN9OvekZNG9o06ikjGUFGQpLT7QBUvrSnjgomDyNZ02CIJo6IgSWnRqlIqq2uZP0WjjkQSSUVBklJefglD+3RhypBeUUcRySgqCpJ0yioO8kbhNi6cPAgzNR2JJFKoRcHM5pjZGjMrNLNbGnl+qJm9ZGbLzWylmc0NM4+khmdWllDraNSRSARCKwpmlg3cA5wPjAMuM7NxDXb7OvCYu58ALADuDSuPpI68/BKOH9id0QO6Rx1FJOOEeaYwAyh097XuXgk8AsxvsI8DPeL3ewIlIeaRFFC0Yx/vbtzFhZrWQiQSYRaFXKCo3nZx/LH6bgeuMLNiYCHwxcbeyMyuNbOlZra0rKwsjKySJPLyY98L5qkoiEQizKLQWA+hN9i+DPituw8G5gIPm9lhmdz9Pnef5u7T+vXTHDjp6s3CbTz05nqmDu3FkD5doo4jkpHCnIu4GKi/mvpgDm8eugaYA+Dub5lZJyAH2BpiLkkyO/dW8t2F7/P4smKG9e3C7fPGRx1JJGOFWRSWAKPMbASwiVhH8uca7LMRmAX81szGAp0AtQ9lCHcnL7+EO55aza79VVx/1rF8adYorawmEqHQioK7V5vZDcAiIBt40N0LzOwOYKm75wFfAX5jZv9BrGnpKndv2MQkaah45z6+/rdVvLymjMmDe/LwNTMZd0yPll8oIqEKdSkrd19IrAO5/mPfrHd/NXBqmBkk+ezaV8kFd79OVU0t3/jUOK46ZbjmNxJJElrfUBJu4XullO+v4i/Xn8KJw3pHHUdE6mmyKJjZzzl8tFAdd78xlESS9vLyNzEypytTh2peI5Fk09yQ1KXAMmKdv1OBj+K3KUBN+NEkHZWWH+DtdTuYN+UYzWskkoSaPFNw94cAzOwq4Gx3r4pv/wp4LiHpJO08vbIEd12cJpKsgly8dgxQfxKabvHHRI5YXn4JE3N7MrJft6ijiEgjgnQ0fx9YbmYvxbfPJDY9hcgRWbdtLyuLy/na3LFRRxGRJrRYFNz9f83sWWBm/KFb3L003FiSjvJWlGAGn5o8KOooItKEFpuPLNYbeA4w2d2fBDqY2YzQk0lacXeezN/EjOF9GNSzc9RxRKQJQfoU7gVOJjZ5HUAFsXUSRAIrKNnN2rK9zNOayyJJLUifwkx3n2pmywHcfaeZdQg5l6SZp/JLaJdlzJ2gpiORZBbkTKEqvoqaA5hZP6A21FSSVmprnafySzhjdD96d9X3CZFkFqQo3A38FehvZt8FXge+F2oqSStLN+ykpPwA89V0JJL0gow++oOZLSM2xbUBF7n7+6Enk7SRl7+JTu2zOGfsgKijiEgLWiwKZvawu/8z8EEjj4k0q6qmlmdWbuacsQPo2lHzL4okuyDNR59YBivev3BiOHEk3bxeuI2d+6qYP6Xh8twikoyaLApmdquZVQCTzGx3/FZBbKnMJxOWUFLaUytK6NGpHWeMzok6iogE0GRRcPfvuXt34E537xG/dXf3vu5+awIzSoraX1nDooJS5k4cRMd2WmJTJBUEaT56x8x6Htows15mdlGImSRNPLJkI3sra3TBmkgKCVIUbnP38kMb7r4LuC28SJIONpfv567nPuT0UTmcPLJv1HFEJKAgRaGxfTSMRJp1e14B1bW1fPeiiVpMRySFBCkKS83sx2Z2rJmNNLOfEFuRTaRRzxWUsqhgC1+aNZqhfbtEHUdEjkCQovBFoBJ4FHgM2A/8e5ihJHXtOVjNbXkFHD+wO58/fUTUcUTkCAW5onkvcIuZdXP3PQnIJCnsR4vWULr7APdcPpX22UG+c4hIMgmynsIpZrYaWB3fnmxm94aeTFJOftEuHnprPVfMHMbUob2jjiMirRDkq9xPgPOA7QDung+cEWYoST3VNbXc+sR79OvWka/OGRN1HBFppUDn9+5e1OChmhCySAr73zfWs3rzbr41bzw9OrWPOo6ItFKQoaVFZnYK4PHFdW4ENEuq1CneuY8fP/8h54ztz5wJA6OOIyJHIciZwnXERhvlAsXAFDT6SOp5ePEGqmtr+db8CbomQSTFBRl9tA24PAFZJEWt2LiLccf0JLdX56ijiMhRCrKeQj/gC8Dw+vu7+7+EF0tSRU2ts2pTORefODjqKCLSBoI0Hz0J9AReAJ6pd2uRmc0xszVmVmhmtzSxzyVmttrMCszsj0GDS3L4uGwPeytrmDS4V9RRRKQNBOlo7uLu/3WkbxxfjOce4FxifRFLzCzP3VfX22cUcCtwqrvvNLP+R/o5Eq0VRbsAmDxERUEkHQQ5U3jazOa24r1nAIXuvtbdK4FHgPkN9vkCcI+77wRw962t+ByJ0MriXXTv2I6ROV2jjiIibSBIUfgSscKw/9Dqa2a2O8DrcoH61zcUxx+rbzQw2szeMLPFZjansTcys2vNbKmZLS0rKwvw0ZIo+UXlTBzck6wsjToSSQctFoX4amtZ7t653uprPQK8d2N/JbzBdjtgFHAWcBlwv5kd1g7h7ve5+zR3n9avX78AHy2JcKCqhvc371bTkUgaCbQugpnlAsP45OijV1t4WTEwpN72YKCkkX0Wu3sVsM7M1hArEkuC5JJovb95N9W1zuTBPVveWURSQpAhqT8ALiU2Id6h6S0caKkoLAFGmdkIYBOwAPhcg33+RuwM4bdmlkOsOWlt4PQSqXx1MouknSBnChcBY9z94JG8sbtXm9kNwCIgG3jQ3QvM7A5gqbvnxZ+bHZ+FtQb4qrtvP7JDkKjkF5fTv3tHBvboFHUUEWkjQYrCWqA9cERFAcDdFwILGzz2zXr3HbgpfpMUk1+8i0mDe2lqC5E0EqQo7ANWmNk/qFcY3P3G0FJJ0ivfX8Xasr18+oSGA8pEJJUFKQp58ZtInfeKywF0JbNImgkyId5D8SmzR8cfWhMfLSQZLL841sk8SSOPRNJKkNFHZwEPAeuJXXswxMyuDDAkVdJYftEuRuR0pVeXDlFHEZE2FKT56C5gtruvATCz0cCfgBPDDCbJbWVxOTNH9ok6hoi0sSDTXLQ/VBAA3P1DYqORJEOVlh+gdPcBJqs/QSTtBDlTWGpmDwAPx7cvB5aFF0mS3aH+BF20JpJ+ghSF64ktv3kjsT6FV4F7wwwlyW1l8S7aZRnjjwkyBZaIpJIgRaEd8DN3/zHUrZPQMdRUktTyi8oZM7A7ndpnRx1FRNpYkD6FfwD1F9/tTGwVNslAtbVedyWziKSfIEWhk7vvObQRv98lvEiSzNZv30vFgWqmDNH1CSLpKEhR2GtmUw9tmNmJwP7wIkkyUyezSHoL0qfwZeDPZnZoLYRBxKbSlgyUX1RO5/bZHNevW9RRRCQEQaa5WGJmxwNjiI0++kDTXGSu/OJdTMztSbvsICeZIpJqAv2f7e5V7r7K3d9TQchcldW1FJTsZrL6E0TSlr7uSWBrSiuorK7VyCORNKaiIIEd6mSeok5mkbTVYlEws7+Y2QVmpgKS4ZZv3EXvLu0Z3LtzyzuLSEoK8of+l8DngI/M7PvxTmfJMFsrDvDMeyWcPaa/lt8USWMtFgV3f8HdLwemEltT4Xkze9PMrjYzzZaaIe55sZCqGufGWaOijiIiIQrUJGRmfYGrgM8Dy4GfESsSz4eWTJJG0Y59/PGdjVwybQjDc7pGHUdEQhRk5bUngOOJTZ19obtvjj/1qJktDTOcJIef/eMjzIwbZx0XdRQRCVmQK5rvd/eF9R8ws47uftDdp4WUS5JE4dYKnni3mH85dQSDeqqDWSTdBWk++k4jj73V1kEkOf34+Q/p3D6b6886NuooIpIATZ4pmNlAIBfobGYnEJviAqAHmiU1I7xXXM7C90q5cdYo+nbTEhoimaC55qPziHUuDwZ+XO/xCuC/Q8wkSeLO59bQq0t7Pn/6iKijiEiCNFkU3P0h4CEz+4y7/yWBmSQJLF67nVc/LOPW84+nRyeNPBbJFM01H13h7r8HhpvZTQ2fP7Q8p6Qfd+dHi9YwoEdHrjxleNRxRCSBmms+OjQgXRPnZ5iX15SxdMNOvnPRBK3DLJJhmms++nX8328lLo5Ezd350XNrGNqnC5dMGxJ1HBFJsOaaj+5u7oXufmPbx5GovVG4nYKS3fzgMxPp0E5zIIpkmuaaj5Yd7Zub2RxiU2JkE7sI7vtN7Hcx8GdgurvrKukI/ea1teR068hFJ+RGHUVEItDS6KNWM7Ns4B7gXKAYWGJmee6+usF+3YEbgbeP5vPk6H24pYJXPizjK+eOpmM79SWIZKLmmo9+6u5fNrOnAG/4vLvPa+G9ZwCF7r42/n6PAPOB1Q32+zbwQ+DmIwkube/+19bSqX0WV5w0LOooIhKR5pqPHo7/+6NWvncuUFRvuxiYWX+H+JXSQ9z9aTNrsiiY2bXAtQBDhw5tZRxpztaKA/xteQmXTB9M764doo4jIhFprvloWfzfV8ysA7GZUh1Y4+6VAd67sZVY6s444iu5/YTYVdPNcvf7gPsApk2bdthZixy9h9/aQFVtLdecNjLqKCISoSDLcV4AfAzcDfwCKDSz8wO8dzFQf0zjYKCk3nZ3YALwspmtB04C8sxMM68m2P7KGn6/eAPnjB3ACK2XIJLRgkydfRdwtrsXApjZscAzwLMtvG4JMMrMRgCbgAXElvUEwN3LgZxD22b2MnCzRh8l3uPvFrNzXxVfOF1nCSKZLshA9K2HCkLcWmBrSy9y92rgBmAR8D7wmLsXmNkdZtZSJ7UkSG2t8+Dr65g0uCfTh/eOOo6IRKy50Uefjt8tMLOFwGPE+gQ+S+wsoEXxxXkWNnjsm03se1aQ95S29cL7W1i3bS93X3YCZo11A4lIJmmu+ejCeve3AGfG75cB+kqZJu5/bR25vTozd8LAqKOISBJobvTR1YkMIomXX7SLd9bv4OsXjKVdtqa0EJEAHc1m1gm4BhgPdDr0uLv/S4i5JAF+89paundsx6XTNfGdiMQE+Xr4MDCQ2EpsrxAbWloRZigJX1nFQZ5dVcqCGUPorkV0RCQuSFE4zt2/AeyNz4d0ATAx3FgStsVrt1NT61w4+Zioo4hIEglSFKri/+4yswlAT2B4aIkkId5Zt4OuHbIZN6hH1FFEJIkEuXjtPjPrDXwDyCO2Ets3Qk0loXtn3Q5OHN5HHcwi8gktFgV3vz9+9xVAl7ymgZ17K1mzpYILJw+KOoqIJJkgcx/1NbOfm9m7ZrbMzH5qZn0TEU7CsWT9DgBmjNCPUUQ+KUjbwSPEprX4DHAxsA14NMxQEq4l63fQoV0Wkwb3jDqKiCSZIH0Kfdz92/W2v2NmF4UVSML3zrodTBnSi07ttbqaiHxSkDOFl8xsgZllxW+XEJslVVLQnoPVrCrZzcwRfaKOIiJJqLkJ8SqITYBnwE3A7+NPZQF7gNtCTydt7t0NO6mpdWaoKIhII5qb+6h7IoNIYryzbgfZWcbUoZrTUEQOF6RPgfj6B2fEN19296fDiyRhemfdDibk9qRrx0A/ehHJMEGGpH4f+BKwOn77UvwxSTEHqmpYUbRL/Qki0qQgXxfnAlPcvRbAzB4ClgO3hBlM2l5+0S4qa2qZPlxFQUQaF3SOg1717mtwe4p6Z13sojUtuykiTQlypvA9YLmZvURsJNIZwK2hppJQvLN+B8cP7E6vLh2ijiIiSarZomCxRXtfB04CphMrCv/l7qUJyCZtqLqmlmUbdnLxiYOjjiIiSazZouDubmZ/c/cTic2QKimqoGQ3+yprdH2CiDQrSJ/CYjObHnoSCdWh/oQZ6mQWkWYE6VM4G7jOzNYDe4k1Ibm7TwozmLStt9ftYEROV/r36NTyziKSsYIUhfNDTyGhqq11lqzfwZzxA6OOIiJJrrm5jzoB1wHHAe8BD7h7daKCSdv5cGsF5furmK7+BBFpQXN9Cg8B04gVhPOBuxKSSNrcof4EXcksIi1prvlonLtPBDCzB4B3EhNJ2trb63YwqGcnBvfuHHUUEUlyzZ0pVB26o2aj1OXuLFm3gxkj+hC77EREpGnNnSlMNrPd8fsGdI5vHxp91CP0dHLUNmzfx9aKg7o+QUQCaW49Ba3VmAZe/agMgJkj+kacRERSQdAJ8VrFzOaY2RozKzSzw2ZVNbObzGy1ma00s3+Y2bAw82SivBUljB7QjWP7dY06ioikgNCKgpllA/cQG7k0DrjMzMY12G05MC1+IdzjwA/DypOJNu3az9INO5k3+Rj1J4hIIGGeKcwACt19rbtXAo8A8+vv4O4vufu++OZiQLO1taGn8ksAmDc5N+IkIpIqwiwKuUBRve3i+GNNuQZ4trEnzOxaM1tqZkvLysraMGJ6e3JFCVOG9GJo3y5RRxGRFBFmUWisvcIb3dHsCmIXyt3Z2PPufp+7T3P3af369WvDiOmrcGsF72/ezbzJx0QdRURSSJirtxcDQ+ptDwZKGu5kZucAXwPOdPeDIebJKHkrSsgy+NSkQVFHEZEUEuaZwhJglJmNMLMOwAIarMlgZicAvwbmufvWELNkFHfnyfwSTj62r2ZFFZEjElpRiF8FfQOwCHgfeMzdC8zsDjObF9/tTqAb8GczW2FmWsinDawsLmfD9n3MVweziByhMJuPcPeFwMIGj32z3v1zwvz8TPXkihI6ZGdx3gRNlS0iRybUi9ck8WpqnadXlnDmmH707Nw+6jgikmJUFNLM2+u2s7XiIPOnaNSRiBw5FYU0k7eihK4dspl1/ICoo4hIClJRSCOV1bU8u6qUc8cNoHMHzWcoIkdORSGNvPphGeX7q5g/RaOORKR1VBTSyJP5JfTu0p7TRuVEHUVEUpSKQprYV1nNC6u3MHfiINpn68cqIq2jvx5p4vnVW9hfVaO5jkTkqKgopAF35/7X1jGkT2emD9eymyLSeioKaeDvq0p5b1M5X541mqwsLaYjIq2nopDiamqdHz23huP6d+OiEzTqSESOjopCivvr8k18XLaXm2ePJltnCSJylFQUUtjB6hp+8vyHTMztyXnjNfmdiBw9FYUU9uiSIjbt2s9XzxuDmc4SROToqSikqH2V1dz9j0JmjujD6bpYTUTaiIpCinrozQ1s23NQZwki0qZUFFJQ+f4qfvXKx/zT8f2ZpusSRKQNqSikoPtfW0v5/iq+Mnt01FFEJM2oKKSYsoqDPPD6Oj41aRDjj+kZdRwRSTOhrtEsrbN9z0F+8VIhpeUHDnuuaOc+DlbXctO5OksQkbanopBE3J2/vLuJ7zyzmr0HqxmR07XR/b74T8cxsl+3BKcTkUygopAkNmzfy9f+uorXC7dx4rDefO/TExk9oHvUsUQkw6goRKy6ppb7X1/HT1/4kHZZWXx7/ngunzlME9uJSCRUFCK0c28l//zg26zatJtzxw3gjvnjGdSzc9SxRCSDqShE6LsL3+eDzRXce/lUzp8wUBehiUjkNCQ1Im8buRCCAAAGvElEQVR+vI3HlxVz7RkjmTtxkAqCiCQFFYUIHKiq4Wt/XcWwvl24cdaoqOOIiNRR81EE7n2pkHXb9vL7a2bSqX121HFEROroTCHBCrdW8MtXPub/nJDLaZrdVESSjIpCAtXWOv/9xCq6dmzH1y4YG3UcEZHDqCgk0GNLi3hn/Q7++/yx5HTrGHUcEZHDhFoUzGyOma0xs0Izu6WR5zua2aPx5982s+Fh5olSWcVB/mfh+8wc0YfPThscdRwRkUaFVhTMLBu4BzgfGAdcZmbjGux2DbDT3Y8DfgL8IKw8UfvOM6s5UFXL/3x6ooafikjSCnP00Qyg0N3XApjZI8B8YHW9feYDt8fvPw78wszM3b2twzy2pIjfvLa2rd82EAcKt+7hy+eM4lhNZCciSSzMopALFNXbLgZmNrWPu1ebWTnQF9hWfyczuxa4FmDo0KGtCtOrS3tGDYjuD/KZo/tx/VnHRvb5IiJBhFkUGmsjaXgGEGQf3P0+4D6AadOmteosYvb4gcweP7A1LxURyRhhdjQXA0PqbQ8GSprax8zaAT2BHSFmEhGRZoRZFJYAo8xshJl1ABYAeQ32yQOujN+/GHgxjP4EEREJJrTmo3gfwQ3AIiAbeNDdC8zsDmCpu+cBDwAPm1khsTOEBWHlERGRloU695G7LwQWNnjsm/XuHwA+G2YGEREJTlc0i4hIHRUFERGpo6IgIiJ1VBRERKSOpdoIUDMrAza08uU5NLhaOgPomDODjjkzHM0xD3P3fi3tlHJF4WiY2VJ3nxZ1jkTSMWcGHXNmSMQxq/lIRETqqCiIiEidTCsK90UdIAI65sygY84MoR9zRvUpiIhI8zLtTEFERJqhoiAiInXSsiiY2RwzW2NmhWZ2SyPPdzSzR+PPv21mwxOfsm0FOOabzGy1ma00s3+Y2bAocrallo653n4Xm5mbWcoPXwxyzGZ2SfxnXWBmf0x0xrYW4Hd7qJm9ZGbL47/fc6PI2VbM7EEz22pmq5p43szs7vh/j5VmNrVNA7h7Wt2ITdP9MTAS6ADkA+Ma7PNvwK/i9xcAj0adOwHHfDbQJX7/+kw45vh+3YFXgcXAtKhzJ+DnPApYDvSOb/ePOncCjvk+4Pr4/XHA+qhzH+UxnwFMBVY18fxc4FliK1eeBLzdlp+fjmcKM4BCd1/r7pXAI8D8BvvMBx6K338cmGVmjS0NmipaPGZ3f8nd98U3FxNbCS+VBfk5A3wb+CFwIJHhQhLkmL8A3OPuOwHcfWuCM7a1IMfsQI/4/Z4cvsJjSnH3V2l+Bcr5wO88ZjHQy8wGtdXnp2NRyAWK6m0Xxx9rdB93rwbKgb4JSReOIMdc3zXEvmmkshaP2cxOAIa4+9OJDBaiID/n0cBoM3vDzBab2ZyEpQtHkGO+HbjCzIqJrd/yxcREi8yR/v9+REJdZCcijX3jbzjuNsg+qSTw8ZjZFcA04MxQE4Wv2WM2syzgJ8BViQqUAEF+zu2INSGdRexs8DUzm+Duu0LOFpYgx3wZ8Ft3v8vMTia2muMEd68NP14kQv37lY5nCsXAkHrbgzn8dLJuHzNrR+yUs7nTtWQX5Jgxs3OArwHz3P1ggrKFpaVj7g5MAF42s/XE2l7zUryzOejv9pPuXuXu64A1xIpEqgpyzNcAjwG4+1tAJ2ITx6WrQP+/t1Y6FoUlwCgzG2FmHYh1JOc12CcPuDJ+/2LgRY/34KSoFo853pTya2IFIdXbmaGFY3b3cnfPcffh7j6cWD/KPHdfGk3cNhHkd/tvxAYVYGY5xJqT1iY0ZdsKcswbgVkAZjaWWFEoS2jKxMoD/m98FNJJQLm7b26rN0+75iN3rzazG4BFxEYuPOjuBWZ2B7DU3fOAB4idYhYSO0NYEF3ioxfwmO8EugF/jvepb3T3eZGFPkoBjzmtBDzmRcBsM1sN1ABfdfft0aU+OgGP+SvAb8zsP4g1o1yVyl/yzOxPxJr/cuL9JLcB7QHc/VfE+k3mAoXAPuDqNv38FP5vJyIibSwdm49ERKSVVBRERKSOioKIiNRRURARkToqCiIiUkdFQURE6qgoiIhIHRUFkaNkZsPN7AMzeyg+v/3jZtYl6lwiraGiINI2xgD3ufskYDexNTtEUo6KgkjbKHL3N+L3fw+cFmUYkdZSURBpGw3ni9H8MZKSVBRE2sbQ+Fz+EJvf//Uow4i0loqCSNt4H7jSzFYCfYBfRpxHpFXSbupskYjUuvt1UYcQOVo6UxARkTpaT0FEROroTEFEROqoKIiISB0VBRERqaOiICIidVQURESkzv8DR+EfDLXtd/kAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d77a25db38>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXdcU9f7xz8h7L1HAANUUYZbfnXVWWvFVQdOcLZWq9Zata6q2KG21m/H16+2TpS6wIGjolWruAVURFApDiAQEEQk7JDk+f0RiSABsiCM+369eEHuPefc54aT55485zmfwyIiAgMDAwNDi0JH2wYwMDAwMDQ8jPNnYGBgaIEwzp+BgYGhBcI4fwYGBoYWCOP8GRgYGFogjPNnYGBgaIEwzp+hXggJCUHv3r21bQZDA+Hm5obz589r24w6qc3OK1euoG3btg1skfZgnH8duLm5wcjICKamprCyssLQoUPB4/GqlQsODgaLxUJ0dHSt7SUkJGDw4MGwtbUFi8Wqdv7ly5cYNWoUTExMwOVysX///hrbCgkJAZvNhqmpqezn0qVLSt8jQ8PA9KXGzXvvvYekpKQ6ywUHByMwMLABLKpfGOevACdPnkRhYSEyMzPh4OCA+fPnVzlPRAgNDYW1tTX27NlTa1t6enoYN24cdu7cKff83Llzoa+vj+fPn2Pfvn2YM2cOEhMTa2yvR48eKCwslP3069dP6fuTh0gk0kg7DFVpiX1JHVpaP2zI+2WcvxIYGhpi7NixePDgQZXjV65cAZ/Px6+//oqDBw9CKBTW2Ebbtm0xc+ZM+Pj4VDtXVFSEI0eO4Ntvv4WpqSl69+6NESNGIDQ0VCP27927F1wuFzY2Nvj222+rfAUODg7G2LFjERgYCHNzc4SEhCA6Oho9evSApaUlnJycMG/evCr3xmKx8Ntvv8HDwwO2trZYsmQJJBJJlWsuXrwYVlZWcHd3R2RkpEbuoznQ1PtSaGiorC99//33Vc5JJBJs2LAB77zzDmxsbDBu3Di8fPlSdl7ZflhXezdv3kTPnj1haWmJjh071vmNJS4uDh06dICFhQXGjx+P0tJSAMClS5fg4uIiK/fDDz/A2dkZZmZmaNu2LS5cuIAzZ85g3bp1OHToEExNTdGxY0cAAJ/Px4gRI2BtbY3WrVtj+/btsnZKSkowdepUWFlZwcvLCz/++GOV67i5ueGHH35Ahw4dYGJiApFIJLtfMzMzeHt749ixY7LyISEh6NWrFxYuXAhLS0t4eHjg+vXrCAkJgaurK+zt7escOAAAiKFWuFwunTt3joiIioqKaMqUKRQUFFSlzIwZMyggIICEQiFZW1vTkSNH6mw3OTmZ3n7779y5Q4aGhlWObdy4kYYNGya3jd27d5OxsTHZ2NhQmzZt6JtvvqHy8nK5ZRMTE8nExISuXLlCZWVltGjRItLV1ZXd25o1a0hXV5eOHTtGYrGYiouLKTY2lm7cuEHl5eX07NkzateuHf3888+yNgFQv379KDc3l1JTU6lNmza0fft2mW26urq0bds2EolEtGXLFnJyciKJRFLne9NcaW59KSoqikpLS2nhwoXEZrNl9/bzzz/Tu+++Szwej0pLS2nWrFk0YcKEKnWV6Ye1tZeenk7W1tb0119/kVgspr///pusra0pOztbru1cLpf8/PwoIyODcnNzqV27drR161YiIrp48SI5OzsTEdGjR4/IxcWFMjIyiIjo2bNn9PjxY5mNkydPrtJunz59aM6cOVRSUkJ3794lW1tbOn/+PBERLV26lPr06UMvX74kHo9H7du3l12nwqaOHTtSWloaFRcXExFRWFgYZWRkkFgspoMHD5KxsTHx+XzZ/4rNZtOuXbtIJBLRypUrydXVlT777DMqLS2ls2fPkqmpKRUUFMh9DypgnH8dcLlcMjExIQsLC2Kz2eTk5ETx8fGy80VFRWRmZkbHjh0jIqJZs2bRiBEj6mxX3gf28uXL5ODgUOXYtm3bqG/fvnLbePLkCT19+pTEYjHFx8eTl5cXrVu3Tm7ZtWvXyj4wFXbr6elV+dC99957tdr8888/00cffSR7DYAiIyNlr//3v//RgAEDiEjaQd95550q1wNAmZmZtV6jOdOc+tL48eNlrwsLC6v0pXbt2skcHxERn88nXV1dKi8vV6kf1tbehg0bKDAwsEr5Dz74gEJCQuTazuVyKTQ0VPZ6yZIl9OmnnxJRVeefnJxMdnZ2dO7cORIKhVXaeNv5p6WlkY6ODgkEAtmxZcuW0dSpU4mIyN3dnc6cOSM7t3379mrOf+fOnXLtraBjx44UERFBRNLPVuvWrWXn4uPjCQBlZWXJjllbW9Pdu3drbZMJ+yhAREQEXr16hbKyMmzevBl9+/ZFVlYWAODYsWPQ1dWFv78/AGDy5MmIjIxETk6O0tcxNTWFQCCockwgEMDMzExueQ8PD7i7u0NHRwft27fH6tWrcfjwYbll+Xw+XF1dZa+NjY1hY2NTpUzl8wDw77//YtiwYXB0dIS5uTlWrFiBFy9e1FiHy+WCz+fLXjs6Ola5HgAUFhbKta+l0Bz7komJSZW+lJqailGjRsHS0hKWlpbw8vICm83G8+fPVeqHtbWXmpqK8PBw2TlLS0tcvXoVmZmZNb43b/dLeX2ydevW+OWXXxAcHAx7e3tMmDChSt9++/2wtrau8t5yuVxkZGTIfb/evj95x/bu3YtOnTrJ7ikhIaHKZ8/BwUH2t5GRkdxjdX3WGOevBGw2G6NHjwabzcbVq1cBAHv27EFhYSFatWoFR0dHBAQEoLy8HAcOHFC6fU9PT4hEIiQnJ8uO3bt3T25MVx4sFgtUg0irk5MT0tPTZa9LSkqQm5tbrX5l5syZg3bt2iE5ORkCgQDr1q2r1n7lbJW0tDRwOByFbG3pNPW+VPn/XlxcXKUvubq6IjIyEq9evZL9lJaWwtnZWaV+WFt7rq6uCAoKqnKuqKgIy5YtU+g+a2PSpEm4evUqUlNTwWKxsHTpUrn2cTgcvHz5EgUFBbJjaWlpcHZ2BlD9sycvw6tym6mpqfjkk0+wefNm5Obm4tWrV/D19a3x/6EqjPNXAiLC8ePHkZeXBy8vL2RkZODChQs4deoU4uLiEBcXh3v37mHp0qU1TrgQEUpLS2UTeaWlpSgrKwMgHUGNHj0aq1evRlFREa5du4bjx48jKChIbluRkZF4/vw5AODRo0f49ttvMXLkSLllx44di5MnT+L69esQCoVYs2ZNnZ2poKAA5ubmMDU1xaNHj7B169ZqZTZu3Ii8vDzweDz8+uuvGD9+fK1tMkhp6n3p1KlTuHr1KoRCIVavXl1lon/27NlYuXIlUlNTAQA5OTk4fvy4rK6y/bC29gIDA3Hy5EmcPXsWYrEYpaWluHTpUhVnqwpJSUn4559/UFZWBkNDQxgZGYHNZgOQjrBTUlJk9+zq6oqePXti+fLlKC0tRXx8PHbu3InJkycDAMaNG4f169cjLy8PGRkZ2Lx5c63XLioqAovFgp2dHQBg9+7dSEhIUOt+5FJrUIiBuFwuGRoakomJCZmampKPjw/9+eefRES0fv166tKlS7U6GRkZpKurS/fv36927tmzZwSgyg+Xy5Wdz83NpZEjR5KxsTG5urrSvn37arRt0aJFZG9vT8bGxuTu7k6rVq2qFp+szO7du8nV1ZWsra3pm2++IQ6HQ5cvXyYi+ZNYUVFR1LZtWzIxMaHevXvTqlWrqFevXrLzAOjXX38ld3d3sra2pi+//JJEIpHsWpXLVpRPTk6u0b7mTnPqSyEhIbK+9N1331WZzBaLxbRp0yby9PQkU1NT8vDwoOXLl8vqKtsP62rv5s2b1KdPH7KysiJbW1vy9/en1NRUuXZXtvPt61WO+d+7d4/8/PzI1NSUrKysaOjQobLJ3xcvXlCvXr3I0tKSOnfuTEREPB6Phg4dSlZWVuTh4SGbRCaSzokEBgaShYUFtWvXjr799lvy8PCo0SYiohUrVpCVlRXZ2NjQwoULqU+fPlWSKSp/tuTN+Tg7O9OVK1fkvgcVsIiYzVxaIoWFhbC0tERycjLc3d1VaoPFYiE5ORmtW7fWsHUMLQVN9MOmxtatW3Hw4EFERUVp1Q4m7NOCOHnyJIqLi1FUVITFixejffv2cHNz07ZZDC2MltYPMzMzce3aNUgkEiQlJWHTpk0YNWqUts1inH9L4vjx4+BwOOBwOEhOTsbBgwflygIwMNQnLa0fCoVCfPrppzAzM8OAAQMwcuRIfPbZZ9o2C0zYh4GBgaEFwoz8GRgYGFoguto2gIGhpWFra9usY9wM2iUlJaXaYkx5MM6fgaGBcXNzQ2xsrLbNYGimdOvWTaFyjPNvSmRnAyEhQHw8kJ8PWFgAHToA06cDrxeEMDQsPB4PU6ZMQVZWFnR0dDBr1iwsWLBA22YxMNQJ4/ybAjExwPr1QIUk8msJWgDA0aPAmjXAkCHA8uWAn592bGyh6OrqYtOmTejSpQsKCgrQtWtXDBo0CN7e3to2jaGZQkQayY5inH9jZ+tWYPFioKQEkJeYVVIi/R0RAZw9C/z0EzBnTsPa2IJxcnKCk5MTAMDMzEwm1cA4f2D+gbvo2soS03ppd/HWw0wBZoXGoqxcUnfhWtBhsbB2pA8G+zjWXbgeOXonA5v+TsKRz3rCycJI5XYY59+YqXD8xcV1lyWSllu8WPqaeQA0OCkpKbh79y7efffdaue2bduGbdu2AYBKKp1NjYSMfJy8x8eNJ7mY3J0LPbb2Egv33kjBiwIhPuqsnujgqfhMnE3I0rrzT+QL8LJYCHszQ7XaYZx/YyUmRnHHX5mKB4CfH6DgxA+D+hQWFmLMmDH45ZdfYG5uXu38rFmzMGvWLACKT8g1ZcJipcqVLwrLcCkpB4O8HeqoUT8UC0U4eS8TQzs4Yf3oDmq1lZVfikS+oO6C9UwiPx9eTuZg66gX+mHy/Bsr69e/CekoS0mJtD5Dg1BeXo4xY8Zg8uTJGD16tLbN0Tql5WJE3M2Af3tH2JoayB4E2uD0/SwUlokwrlt1DX1l8XW2wOOcQpSWizVgmWpIJIQHfAF8ONUHGMrCjPwbI9nZ0sldVRdfEwGnTwM5OdrNAmoB2UlEhJkzZ8LLywtffvmlts1pFJxNzIKgVIRJ/8eFq7Uxdlx5huyCUrXDFKoQFsODu60J/Nys1G7Lh2MOsYTwKKsAnVwtNWCd8vDyilFQJoIPx0LttpiRf2MkJET9NlgszbSjCjExwOjRAJcrzUTatw84dUr6OzgYaNVKej4mRjv2aZBr164hNDQU//zzDzp16oROnTrh9OnT2jZLq4THpsPZ0gg937FBQFdXiCWEY3cyGtyOpzmFiE55iYBuLhrJjqlwuIn8fLXbUpWKsBMz8m+uxMdXTedUhZIS4P59zdijDC0sO6l3794a32GpKcN7WYyrj1/gi/fbQEeHhdb2pujGtcKhWB5m9fFoUAG38NvpYOuwMLaLi0bac7Eygrmhrlbj/on8fOjqsODpIH87TmVgRv6NkXzNjCxePn2K7OzshnNOlbOT6rpm5ewkOTuEMTRNDt9OB4sFjO36xuGO6+aKpzlFuJOW12B2iMQSHLmdjv5t7WBvrplwE4vFgg/HQqvOPyFDgNb2pjDUY6vdFjPyb4xYqB/PA4AbDx9iipcXysrKZBt0e3h4VPlxc3OTbQCtFkx2UotHLCEcvp2O3q1t4WJlLDs+tIMT1p5MxKEYHrpyrRvElqh/c5BdUIYADUz0VsaHY47Qm6kQiSXQ1UL6aiJfgL6empkvY5x/Y6RDB+DIEfVCP0ZGGLpsGXKXLEF+fj6ePXuGp0+f4unTp3j48CFOnz6Np0+fIjU1FdbW1lUeCJUfEk5OTtDRUaCTayI76cgR1eozNAquPX6BjFclWDakXZXjJga6GNaBg5PxfKwe7gNTg/p3O4dieLA11ceAdvYabdfH2RxlIgme5BShraP6oRdlyBaU4kVhmUbi/QDj/Bsn06ZJJ0rVgUjaDgALCwvZZOTbiMVi8Pl82YPh2bNnOHfunOx1fn4+3Nzc5H5rcHd3h5mZWfPJTmJQi7BYHiyM9OTm9I/zc8GhWB5Ox2dinJ9mR+Nvk1NQhn8eZWNGb3eNLy7zrTTp29DOP+H1RLOvs2YiA4zzb4zY20u1eiIiVHOoLBbg76+QI2Wz2XB1dYWrqyv69u1b7XxRURFSUlJkD4OnT5/i4sWLsm8SJiYmWG1oiFnl5TBQ3tKqNoeEAEuWqNMKg5bIKxLi78TnmPRuK7nx6C6trPCOnQkOxfLq3fkfu5sOkYQwrptmJnor42FnCkM9HSRkCDC6i8abr5XEDOlcg5eTZh46jPNvrCxfLs2GUTaGDgBGRtL6GsDExAQ+Pj7w8fGpdo6I8Pz5c+hMnQqD9HT1LqSt7CQGjXA8LgNCsQQBNThcFouFcd1csT7yER5nF6K1vWm92EFECItNR5dWlmhtr/mROVuHhXaO5lpJ90zkC+BmYwwzQz2NtMdk+zRW/PwgWLMGxcqmxhkbS9MnG2DylMViwdHREfb6+pppMK/hskEYNAcR4VBsOnydzWtdfDS6iwvYOiyE1+OK3ztpr/A4uxDj6/Hbha+zOR5kCho8xTcxMx8+Ggr5AIzzb7SIxWKMPX8e5wYPljr0Oh4CYgASQ0Pt5M1rKDsJVuqvwmRoeBL5AjzMFNQpoWBnZoAB7exx5E4GysXqKWzWRHgsD8b6bAztoJ6IW234cCxQUCoC76WKCQ4qkF9cDt7LEo1N9gKM82+0rFu3DkKhEENPngSioiAcOhSlAOjttEwjI8DQECkdO2Jm69YQvxYPaygyMzMRlZeHUnUX7xgZAe3ba8YohgblUAwP+ro6GNnRuc6y47u54kVhGS4+yta4HUVlIpy8x8fQ9k71mlFU4YATGjD0k5iZ//razMi/WXPx4kVs3boV+/fvh66uLtCtG87OmoXAPn3AWrsWCApCjIMDUvv0AdauBdLS4H7nDp7Z2OC3336rd/vKyspw+PBhDBs2DN7e3jhqbg59PTXjkJWykxiaDqXlYhyPy8CHPo6wMK67D/Rrawc7MwOExao5RySH0/czUSQU1/uEsqeDGdg6rAaN+z/QoKxDBcyEbyMjKysLgYGB2Lt3LzicN19do6Ki0GnQIFk2zMFFi+Dg4ICvXr/WAbBjxw50794dw4cPR+vWrTVqFxEhNjYWISEhOHToEDp27Ihp06bh0KFDMDExkWr1NEB2EkPjokLETdEYuy5bB2O6uGD7lafIFpRqbPUtIE019bAzQTdu/YYPDfXYaGNv2qArfRP5AjiaG8LWVK2cuiowI/9GhFgsxqRJk/Dxxx/j/fffr3IuKiqqSiqmh4cHnj59WqVM69atsXLlSsycORMSiWZiqpmZmdi4cSN8fX0xceJEODo64vbt27hw4QKCgoKkjh+QZhepuFJYYmCgsewkhoYlLJYHFysj9PCwUbjOuG4uEEsIR+9qTuztaU4hYlLyMK6ba4PoBzW0zENCRr5GR/0A4/wbFd988w1YLBZWr15d5bhAIMCjR4/wf//3f7JjHh4eePbsWbU2Pv/8c5SXl2PLli0q21FaWoqwsDD4+/vD29sbSUlJ+OOPP5CcnIxVq1aBy+VWr+TnJ51sNjaufq4WRPr6WKqri6vqCtkxNDi8l8W49jgXAV1doaPExiIedqbwc7NCWAxPYxkzYbFSEbfRXeqed9AEPhxz5BSUIVtQ//22RCjGk5xCxvk3V86dO4cdO3Zg3759YLOrLpK5evUqunXrBgODN1/55I38AemirV27diE4OFjuw6EmiAjR0dH47LPP4OzsjG3btmHSpElIT0/Hjh070Lt377pHVHPmIHn2bBSzWKC6yrJYgLExdH/5BR8cPYrRo0fjxIkTCtvLoH3CK0TcVFhMNa6bK56+KMLtVPXTe0ViCY7cSUf/tvYNtmdAhSNuiNH/oywBJAR4a3CyF2Ccf6OAz+djypQp+PPPP+HoWH1/0LdDPgDA5XKRlpYGsbj6rkLt2rXDkiVL8Mknn9Q5suLz+fjxxx/h4+ODyZMnw9nZGXfv3sX58+cRGBj4JqyjAEKhEB+dOYPr69aBNWoUYGhYLRRUgtdhnlGjgKgoYM4cDBo0CKdPn8ann36KnTt3Knw9Bu0hlhAOx/LQu7UtnC2VD/f5t3eCiT4bh2LUz/m/lJSDnIKyelnRWxPeMudf/5O+Ca8fML7OzMi/WSESiTBx4kTMmTMH/fv3l1tGnvM3NDSEnZ0d0mtYWbto0SIIBAJs37692rnS0lIcOnQI/v7+8PX1RXJyMrZv345///0XK1euRKtWrVS6l02bNoHL5WLg0qVSkba0NGk2UlAQMGwYEBSE4127YndwsPR8pYVo3bp1Q1RUFL7//nusX7+e0chv5Fx9/AL8/FKVF1OZGOhieEcO/rqficIykVq2HIrlwdbUAP01LOJWG2aGenCzMUZCRv2P/B/w82FhpKfSQ7Y2mGwfLRMcHAx9fX2sXLlSeuCtrQ/LTUww8M4ddH/nnWp1K0I/8mLwurq62LVrF/r3748hQ4bAxcUF0dHRCAkJQVhYGLp27YqpU6fi8OHDMFYyTi+Pp0+fYtOmTYiJiXkTHrKzq6bVoxMWhqN79mDmsmXV2vD09MTVq1cxZMgQZGVl4eeff1ZMUZShwQmL5cHSWL6Im6IEdHPFwRge/ornY7yfagOO7IJS/PMoGx/Xg4hbXfhwLBCf8arer5P4es9eTU9kM58sLXL27FmEhIRI4/x37sjd+lDv0CGsEolg1LZtta0Pa4r7V+Dr64vp06fj/fffh7e3N4KCguDq6oq4uDj8/fffmDx5skYcPxFh7ty5WLx4Mdzd3WstO2jQIFy+fBklNcg/czgcREVFIS4uDpMnT4ZQKFTbPgbNklckxLnE5/iokzMMdFXfVESqv2OqVujn2J0MiCWkcd1+RfBxNgfvZQnyS8rr7RrlYgkeZRVoTMmzMozz1xLp6emYNm0a9u3bB/sjR4B+/aR58qWl1XT8DYmkxyIipOVe73xVU8ZPSUkJDh48iA8//BA7duxAbm4uRo8ejaSkJKxYsQKurpr9oISHh4PH42HRokV1lrWyskLnzp1x6dKlGstYWlri7NmzKCsrw9ChQ1FQUKBBaxnUJeK1iFtdcg51IRV7c3mtx6P8/1gq4sZDV65VvQnF1UbFatsH9Tjp+zi7EEKRROOZPgDj/LVCRZx//vz56PvggcpbH1Ye+RMRbt68idmzZ8PFxQW7d+/G1KlTkZGRgfPnz2P79u3IzMzU+L3k5+dj4cKF+OOPP6Cn4Cpff3//Ojc5NzQ0RHh4ODw8PDBgwABkZ2teDoBBeYgIh2J4aO9sIZv0VIdRnV2gq8NSacXvnbQ8PMkpwngtjPqByhk/9Tfpq8kN29+Gcf5a4Ouvv4apqSmWDRyo1taH7cvK8OjRI2zYsAFeXl6YOnUquFwu7t27h7Nnz2LixIkwMjJCp06dMHv2bMyePVvjE6krV66Ev78/evXqpXCdCudfly1sNhu///47hgwZgt69e9ecupqdDfz4IxAYCAwfLv3944/SzWEYNEpChgCPsgo0lllTIfZ29E660mJvYTHpMNZnw7+Dk0ZsURZbUwM4mBvUa7pnIj8fRnpsuNvWwzcbYmhQTp06Ra6urpSTk0M0ahQRi0UkHdMr9SNmsSjK1pZYLBZ9+umndOPGDZJIJDVet7S0lHx8fGjfvn0au5dbt26Rg4MD5ebmKlVPIpGQs7MzPXr0SOE6mzdvJmdnZ4qLi3tzMDpa+h4aGkp/Kr9HRkbSY6NGScs1Irp27aptE1Rm5bF48lx5ml4VCzXW5vkHWcRdeorOJGQqXKewtJy8V0XSkvC4ugvXIzN2R9Og/1yqt/YDfr9Oo/53Vak6ivYvZuTfgKSlpWHmzJk4cOAAbCUStbY+1CFCr/x8OOvrY+PGjejevXut2QAGBgbYvXs3Fi5ciOfPn6t6CzJEIhE+/fRTbNy4EdbWym3KzWKxFAr9VGbu3Ln4+eef8cEHHyAqKko671HLPAlKSuTOkzCojlTEjY8hvo6wMNLMhiIA0NfTDvZmBkrp/P/1WsStPnX7FcGHY47H2YUoEVZfb6MuEgnhAV+gUSXPyjDOv4EoLy/HhAkT8OWXX0pDJCEharfJ1tXF5xYWCq/k9fPzw/Tp0zFv3jy1r/3f//4X1tbWCAwMVKm+ss4fAAICAnDgwAGcGjYMooULVZonYVCdMwlZKCgVqT3R+za6bB2M6eqCi0k5CsslhMVIRdy6tNLuHhDeHAtISLoKV9OkvSxGYZmoXuL9AOP8G4zly5fD2toaixcvlh6Ij68+WlWWkhJ01dNTSsYhODgY9+/fx+HDh1W+LI/Hw/fff48tW7aonHs8cOBA3Lx5E4WFhUrVG2Bmhg0iEXTLypS7YMUDIDZWuXoMMsJieXC1NkJ3JUTcFGVcN1eIJYQjd+oWe3uSU4jY1DyMbyARt9qoWHVbH3H/N5O9zMi/yXLixAmEh4djz549bxYt5WsmQ8BeT6/WXP+3MTQ0xK5duzB//ny8ePFCpWt+/vnnmDdvHtq2batSfQAwMzPDu+++iwsXLihXcf16sJV1/BWUlADr16tWt4WTlluM60+UF3FTFHdbE/yfmzXCY+sWewuL5YGtw8KoBhJxqw1nSyNYGOnVi/NP4OdDV4cFT8f6SWNlnH89k5KSgk8++QSHDh2CjU2lEZOGtj5k29oq5fwBoGfPnpg4cSI+//xzpa934sQJJCYmYpmcFbrKonToJztbrXkSEAGnTzNZQCoQfpsnFXHrWn/6OeP8pGJvMSk1i72ViyU4cjsDA9o1nIhbbbBYLPhw6mdD90S+AG0czNRaSFcbjPOvR4RCIcaPH4+lS5eie/fuVU926CAVPlMDkZ4ehO3aKe38AeC7775DdHQ0jh8/rnCdwsJCzJ8/H7///jsM1bQdUDzlU4YG5knAYmmmnRaEWEI4fDsd77WxA0fD+jKV8W/vCFMDXYTVMvF7KSkHLwrLND7voA4+HHM8yirQ6L7ERIQHfM1r+FeGcf71yFdffQUnJyd4XX65AAAgAElEQVQsXLiw+kkNbFkoEYsx5sQJ3LhxA8nJyUrVNTY2xs6dO/HZZ58hL08xWd3g4GD06dMHAwYMUMXcarRt2xb6+vpISEhQrIKG5klw/756bbQwriTnIDO/tN4XUxnr62J4Ryf8FZ+JglL5kgmHYniwMzNA/7aNZ9c3X2cLCEUSPMlRbv6qNrILyvCiUMg4/6bI0aNHcfz4cezevVvupBTZ2SHV2xsqJ4ixWND/6CNEXLsGgUCAXr16YfDgwYiIiIBIpJhKYt++fTFq1Kg3D6daFkvdu3cPe/fuxaZNm1S1WM4tKJnyqaF5Eij4sGOQEh6bDitjPbzvXf+qmQHdXFFSLsZf8dVXo2cXlOJiUjZGd3GGbgOLuNWGbKWvBhU+EzKkfb0+NH0qaDzvYDPi6dOnmD17NsLCwmBlVT0VLSsrCyNHjsSKggKwVA2fGBkBy5fD19cXtra2uHnzJgIDA/Hjjz/C3d0d3333HbKysupsZsOGDcj7+29k9exZTVQO+/YBwcGgVq3wsn9//PHJJ7C316wDqM35Z2Vl4cyZM9iwYQMmTJiAE1FRmrmonP8Jg3xeFgnx94MsfNRZPRE3Rensaok29qY4JCf0c/S1iFtjCvkAgLutKYz02EjQYNw/kS8AiwV4OTEj/yZDWVkZxo0bh6+//hp+fn7VzoeFhaFTp07o2LEjdickQOc//1F660MYG0u3THyth+/h4QE+n4+goCBcv34dJ06cQFpaGry8vDBhwgRERUXVGFc3DQ3F0ZcvYXfjRo2LpVilpeiTl4ePfvlF47ny/fr1w927dxEdHY2DBw9i2bJl+PDDD+Ho6AgfHx9s3LgROTk5GDp0KNoHBqJcV00VciMjoH17zRjfAoi4m4FyccM5XKnYmyvupr1C8vM3Ym/0WsStG9cK79g1vIhbbbB1WPByMtNoxk8iPx9uNiYwNag/1X3G+WuYRYsWwc3NDfPnz69yPDc3FxMmTMCaNWtw4sQJfPvtt9DX1wfmzHmz920dOcuS11sf4qefpPVe87a0c+fOnbFt2zY8e/YMPXv2xOzZs+Hr64v//e9/EAgqddCtW4HFi8EuK0NdYzo2AJYGFksVFRXh5s2b+P333zF79mz0798fxcXFGD58OMLDw2FiYoK5c+ciJiYGL168wIULFzBx4kRcvHgRg/78E6TuxvREGplvaQlUONwOLhb1OgJ9m1FdnF+Lvb0Z/d9OzcPTnCKM0/KK3prw4VjgIV8AiUQz2lkVGv71CeP8laEOAbGwsDCcOXMGO3furBLnP3nyJDp06ABnZ2fcuXOnykbsAKSOPCpKurWhoSEkb4eCjIwg1tfHBVNT0KVLVRw/ALi7u8vN+LG0tMTnn3+OBw8eYPPmzbh06RK4XC7mzJmD5P371RKVU2Sx1Nthm3bt2sHOzg7z5s1DbGwsfH198dNPP+GHH36Av78/jhw5glWrVmH48OGwsbHB7t274efnh7Fjx8LT0xPXHz+G/siRdT4ka4TFAvz9pZvMMNTJ/Yz81yJuDetwbU0N8L6XA47eyZBl0ITF8mCiz8bQ9toRcasLH445CspESHup5OdJDq+KhUjPK6m3xV0ylJMZaqEoICBWMGgQDbK0pNu3b8uqvXr1iqZPn07u7u4UFRWl2LWys+nRxx/TWUdHomHDiIKCiH78kSTPn1OHDh3ozJkz1ars2rWLgoKCFGo+IyODgoOD6bShIYlUEJQjQCpGN3q0rE2RSEQPHjyg/fv301dffUUffPAB2dvbk42NDQ0cOJAWLVpEoaGhdP/+fRIKqwuCPXnyhBwcHEgsFtOjR4/oiy++IBsbG/L396dTp06RSCSq+r8wNlbNbmNjopgYxf4P9UhTEXZbcVTzIm6KcuGhVOwt8n4mFZSWk9eqSPoq/F6D26Eo8bxXxF16ik7d46vd1rXkHOIuPUVRSdkq1Ve0fzHbONbF69AISkrkLy56vSOV0blz+EtfH3q3bgFduuDChQuYMWMG/P39ER8fD1NTBeOUdnaI8vNDNBE+2LFDdpgFYOHChfj5558xePDgKlU8PDwU3vicw+FgzZw5oPXrofI6TSKITpzA0ilTcDUpCQkJCXByckKnTp3QqVMnzJ8/H506dYKzs7NCy+9dXV2hq6uL7t27IzU1FTNmzEBMTIz8XcH8/KRhL2W/tbw1T8JQOyVCMU7E8eHf3kmjIm6K0qeNHRzMpWJvgpJyFAvFjTbkAwCejqbQ1WEhkZ+PoWpKTNenhn9lGOdfGxWOXwEnwwbAFgpBixfj0KFDWPLkCXbs2FHNUStCSkoK3Nzcqh2fOHEili9fjoSEBPj6+sqO17SjV42EhKitiSImwuiCAoz+z3/Qvn17mJsr31EzMjKwfft22SbzrVq1wpUrV2BgYFB7xYqwV20P5QpYLOkk71vzJJpkxowZOHXqFOzt7RVfs9DIOZOYiYIyEQI0pNuvLLpsHYzp4oLfo54g7WUx3rEzQZdWllqxRREMdNlo46CZSd8Efj6cLAxhY1rH50BNmJh/TcTEqBQTZxUXY9TVq3iwd69Kjh+o2fkbGBjgs88+wy+//FLlOIfDQW5ubo374lZARCgsLETB9etqL5YyEIvRy8wMvXr1UsrxSyQSnD9/HmPGjEH79u2RnZ2NM2fOYO/evUhPT6/b8Vfw1jwJjN5aeWpkJD0+apS0XD05fgCYNm0azpw5U2/ta4OwmHS0sjZGd3fNi7gpyrhurpAQkJxdiPF+2hdxq4sKmQdSc8OkhpjsBZiRf82sXy8L6SiLgUQCg82bgf79Vapfk/MHgNmzZ8PT0xPr1q2Dvb09SkpKkJ2dDXt7e+zZswdGRkbIzs5GdnY2cnJyqvzOzs4Gi8XCSQADVbLsLZRYLJWXl4eQkBBs3boVhoaGmDNnDkJCQmBmZgZAmiL78OFD5OTkwE7RCdlu3YAjR6QT7iEh0pW7eXnSPP727aVZPQ0wudunTx+kpKTU+3UairTcYtx4motFgzzrRcRNUdxsTfB/7ta4k5qHUZ218w1EGXw55jh8Ox3ZBWVwMFdt/U6JUIynOYXwb4CJbcb5y0OTAmJKOh+hUIgnT56gsLAQZ8+elevA9fX10bZtW4hEIpSXl8POzg4CgQA7duyAt7c37O3tYWdnV+Xvit8mJibSLKV9+1S7t8oosFgqJiYGW7duxdGjRzF06FDs3r0bPXv2rDaKMzAwwIABA3D27Fnl9wiwswOWLFGuTgOzbds2bNu2DQCQ08iF5cJipSJuY+pRxE1RvvvIF09zCmFnVr8hEE3g83o1biI/X2Xn/zBLAAnVf7wfYJy/fDQoICZauBAvXryo5sDlOfWcnBwUFxejvLwcy5YtkzntCsf9zjvvwM7ODpMmTcL8+fORlJQEOzs7sFgsfPbZZ/Dy8qq2vkAuHTpIR8zqhH5qWSxVXFyMgwcPYsuWLcjNzcWnn36Kf//9t87VwRWrfVXdIKYxM2vWLMyaNQsA0K0RTzpXiLj1qWcRN0XxdDCDp4OZts1QCC8nc7BYUpmHAe0cVGojsQFkHSpgnL88NCQgdujrrzF5+XLY2NhUG4Hb29uja9eu1Y5lZ2dj6NChiIuLq7X50NBQnDp1CjNmzACg5KTvtGlSGQd1kLNYKikpCb///jv27t2LHj164JtvvsHgwYPBZismCzBkyBAsW7YMYrFY4ToMmuVycg6yBKVYPdxb26Y0OUwNdOFmY6KWzEMiXwBLYz1wLOpfrppx/vLQkIDYR/36oez0aaUcWWxsLLhcbp3lvvzyS3zxxReYPn06WCwWPDw8cPXqVcUuYm8PDBki3d9WhdCWGMB9Z2e0MTaGfnk5Tpw4ga1bt+L+/fuYOXMmbt++XeOcRW24uLjAxcUFt27dQs+ePZWuz6A+4bE8WJvo430v1UauLR0fjjnieK9Url8x2dsQk9tMto88NLTRioGDg9Ij2NomeyszcOBA6Ojo4Ny5cwCqSzzUyfLlEOmplr+tY2SE/a1awdXVFU5OTvj1118xc+ZMpKWlYd26dSo5/gpU2dtX20ycOBE9evRAUlISXFxcFF5z0djILSzDuQfP8VEnZ+jrMq5BFXw4FkjPK0F+sXxJ6tooF0uQlFVQ/yt7X8P8h+WhgY1WxPr6EPv4KF1PUefPYrFki76ANxIPiqaZhT17hgXl5ShT8uEkNjDAH56e2BEXh+7du4PNZqNz584YMWKE4mmatdAUnf+BAweQmZmJ8vJypKenY+bMmdo2SSUi4vgoFxPGN+LFVI0dmbyzCqGf5OeFEIolDTLZCzDOXz4aEP4SlZfDd+NGfPzxx4iMjESZgvvOKur8AWDSpEmIi4tDYmIiLCwsYGBgoFAmSXh4OAIDA5H50UfQ/+9/FRaVK2GxsN7WFpg9G6mpqTh9+jQePnyIly9fomPHjrh8+bJCdtdGjx49kJKSAj6fr3ZbDIpDRAiL4aGjiwXaOjaNCdbGyBvnr/xir4oHBjPy1yYVMXE1BMQMRo1CZGwsvL298f3338PR0RGTJ0/GkSNHUFRUVGNVZZy/gYEB5syZI130lZ2NNUZGYE2ZIld0roIKx//+++/j8OHDYNWxWKqMzUYpgNsuLvh3+3as5PEwe/ZsWX6+tbU1QkND8Z///AcTJ07EggULar2/utDV1cWgQYOa3aKpxk58ej6Snhc0agmFpoCNqQGcLAxVGvkn8gUw0mPD3dakHiyTg0rKQS0BDQuI8fl82rp1Kw0aNIjMzc1p1KhRFBoaSnl5eVXKcTgcSktLU9jMl2fP0kk9PZIYGFApmy1XdI5GjSKKjqbw8HAyMDCg/v37U3l5efXGsrOp7Pvv6d/u3SnKwoKOmJrSP0OGUM6DBwrZkpubS4GBgfTOO+8oLmQnh5CQEBozZozK9Rs7jVHYbfnReGr79WnKL2l4EbfmxsyQaHp/0yWl643deo1Gb7mm9vUV7V+M868FwY8/UhGLpbzj37Kl1nZzc3MpJCSERowYQWZmZjR48GD6448/KDU1lfT19auqWNbGli1ExsYkVkCFs1xfn+bp6lKPHj2otLS0WlMPHz6kBQsWkLW1NQ0bNoxOnz5NYrFYlbeNjh8/ThwOhz7//HMqLCxUun5WVhZZWFjIVQBtDjQ2519cJiLf1Wdo4cG72jalWbDp7yRyX3aKissU/BwTkVgsIe9VkbQq4r7a11e0fzFhnxoQiUQYGRmJs4MGKRQTpxo2WpGHtbU1pk6diuPHj4PP52PmzJm4ePEifH19oaOjg82bNyMtLa12AyuJztX5TySCrlCIH8ViXBw/XjYxW15ejsOHD2PgwIHo168fjI2Ncfv2bZw8eRJDhgyBjo5q3WPEiBG4f/++ynMBDg4O8PT0xLVr11S6PoNyRCZUiLgxIR9N4Msxh4Skq3UVJfVlMYqE4gab7AWYmH+NLFmyBPr6+hhx+nSdAmLlurq4xeGoJCBmamqKgIAAHDhwAAcOHICnpyfu3buHLl26wM/PD+vXr0dSUlLVSiqKzhkRwWDFCjz/6y+sWbMGXC4Xv/32Gz755BONpGlWRt25gKaY9dNUCYvlgWtjjO4e1to2pVnwRuZBceff0JO9AOP85RIaGoqTJ0/iwIED0jz9CgGxtDRg7VogKAgYNkz6e+1alD9+jAAWC9eFQrWuy+fz0a1bN+zatQtZWVn44YcfkJGRgf79+8PHxwerV69GXFwcaN06lUXnJMXFiB41Crm5ufj7779x+fJlTJgwQbqlZD2g6rcAxvk3DKm5Rbj59CUCuro0etXMpgLHwhCWxnoyqQZFSMgQQI/NQhuHBtyfWO0AUzMjNjaWbG1t6f595WJvISEh1L17d5JIJCpfe8WKFfTNN99UOy4Wi+n69eu0ePFi8uNyqUTVHbhe/0gMDIiyVdslSB2UmQsQi8VkZ2dHKSkpDWRdw9GYYv4bzzwi92WniP+qWNumNCsmbb9Bw367onD5wB03acgvlzVybSbmrwLZ2dkYPXo0/vjjjyqbpShCUFAQSktLER4ervL1a0rz1NHRQY8ePbBx40bc+uwz6Ku5mIqlo6MZ8TolUeZbgI6ODgL69gV/4cIa90xmUA+ZiJunHZwstC/i1pzw5VggKatAtgdxbRARHjSQhn9lGOf/mvLycgQEBCAoKAijR49Wur6Ojg42bdqEZcuWKbyg620UyfFnxcdDR8X2ZZSUSLXvtYBCcwExMcDo0fjt+HF0OX5cKj996pT0d3Aw0KoVMHq0tByDylSIuI1nJno1jjfHHEKxBI+zC+ss+1xQhtwiIeP8tcWiRYtgZmaGtWvXqtzGgAED4OPjg//+978q1U9JSalb1E1DonOZDx/izp07yM3NVXvnIVWo8VvA1q1Av35ARATY5eUwkLw1ciopkSquRkRIy23d2tCmNxvCYqQibgMZETeNUzFxm6BA3D+hAWWcK8OoegLYvXs3zpw5g+joaLWlhDdu3Ij33nsP06ZNg62trcL1ysrK8OLFC3A4nNoLakh07mFWFhZOn47U1FSIRCJwuVzZj5ubW5XXjo6OKqd91kbFt4ATJ05g4sSJ+NnTEwG3boGlyGQ2kTTbafFi6et63KaxOZJbWIbzD59jSg83RsStHnC3NYGxPhuJfAEC6iibyBeAxZLuB9CQtHjnHx0djaVLlyIqKgqWlupvEN2uXTuMGzcO33zzDX777TeF6/F4PDg7O0NXV/6/JDc3F8eOHQNFRyMQgFoRWiMjDPj8c9x7vftVfn4+UlNTq/zExsbK/s7Pz4eLi0uNDwgXFxfoqagQCki/BfQ1Nobhhx+CJRYrV7niAeDnJ83KYlCIY3czUC4mjGNCPvUCW4cFLydzPFAg3TORnw93GxOYGDSsO27Rzj8rKwtjxozB9u3b4eXlpbF2g4OD4eXlhXnz5sHT01OhOvLi/RUOPzw8HDdv3sTgwYMR+NVXMJw3D1An7v/WRiwWFhbo0KEDOnToILd4SUkJ0tLSqjwczp07J/s7KysLDg4OVR4OlR8SrVq1grGxca0mWWzZArwd4lGUkhLpnstHjqhWv4VBRAiL5aGjqyUj4laP+HDMcfROBiQSqnUv5ES+AJ1bqT/wVJYW6/yFQiHGjh2LmTNnYuTIkRpt287ODkuWLMHSpUtx7NgxhepUOP/c3FxEREQgLCwMN2/exAcffICPP/4YR48ele6/C0j3B1ZxIxawWIC/v1J7CxsZGaFt27Zo27at3PPl5eXIyMiQPQxSUlIQHR2N8PBwpKamgsfjwdzcXO7Dgcvlwt3EBBZa2jO5JXIvPR//Pi/EulHyt+Fk0Aw+HHPsvZGK1JfFNYq15RUJkfGqBEE96t7ASdO0WOf/xRdfwMbGBqtXr66X9hcsWICtW7ciKioKffv2rbXsy5cvERERgaSkJHh4eGDQoEGYOXNmVYdfmeXLQWfPgqXkCl8A0hXKy5crX68W9PT04ObmVmOmkkQiwfPnz6s8HB49eoSzZ88iNTUVHyUnY6VQqF4o6/WeyY19I/fGwKEYHgz1dDCso5O2TWnWVEz6JvLza3T+DzIFr8s2bLwfaKHOf8eOHbh48SJu3bpVLxOZAGBoaIh169Zh0aJFiI6OrnadvLw82Qj/+vXrsLCwwPDhw/HDDz/A1LT2VX7iLl2wxc0NMx48gFLirxXaQw0cG9fR0YGTkxOcnJzQvXv3aucpMBCsffvUu4gW01ebEiVCMU7e48O/vRPMDVWfp2GoG08HM+ixWUjkCzCsg/xEDm3IOlTQ4qb5b9y4gRUrViAiIgLm5vX7tJ0wYQJ0dHSwf/9+AFKHv3v3bvj7+8PNzQ2nTp3C1KlTkZGRgVatWmH8+PF1On4iwowZM7AsJQVXRo5USHQOSojOaQOWhtJXkZenmXaaMafvZ6KwTMRM9DYA+ro6aGNvVmu6Z0KGABwLQ1ib1I+8Sm20KOfP5/MREBCAXbt21Ri/1iQ6OjpYu3YtFixYgMGDB8PNzQ0nT57ElClTkJ6ejiNHjmDChAkwNTVVeBOX5cuXIzw8HPPnz8eHERF1is7B0FB6XgXRuQZDQ+mrsLLSTDvNmLBYHtxsjPGuOyPi1hD4OkszfmpaS5PIz4e3Fkb9QAsK+5SVlWHs2LH49NNPMWzYsHq91qtXr3D8+HGEhYXh6tWrMDExgaWlJdLT02U7YL1tW05OTp05/r/++it++eUXTJs2DevXr5cerBCdy8mRxrzv35eOgK2sgPbtpVk9jX0StEMH6T2UlqrehpGR9H4ZaiTlRRFuPXuJJYPbMiJuDYQPxwJhsel4LiiDo0XVfcGLhSI8fVFUY0iovmkxzn/+/PlwdHTEypUr66X9CocfHh6Oy5cvY+DAgZg8eTIOHjyI58+fo3v37iguLpbr/OvK8QeAQ4cO4auvvsKoUaOwdevW6h9eO7umO9k5bRqwZo16bbyVvspQnfDbPOiwgDFdXLRtSouh8obubzv/h5kFINLOZC/QQsI+f/zxB65du4Y9e/ZodII3Pz8fe/fuxfDhw8HlcnHs2DFMmjQJ6enpsr/NzMzQunVrBAUFITg4WG47dYV8/vnnH0yZMgUDBgzAvn37mt+oTQN7JiubvtrSEIklOHw7HX097ao5IYb6w8vJHCyWNLb/NhWTvQ0t61BBs3f+165dw6pVqxARESF31K0s+fn5CA0NxfDhw9GqVStZ3J7H4yEiIgKTJk2SO5G8atUqHD58GA8ePKh2rjbnHxcXB39/f3Tt2hUnTpxQW36i0bJ8efU5C0Wph/TV5saV5Bd4LijDeGaD9gbFxEAX7rYmcjd0T8wQwMpYD05aehg367BPRkYGxo0bhz179qBNmzYqtyMQCHDixAmEhYXJ8vbHjx+PP//8ExYKTlZaW1tj+fLlWLJkCf766y8gO1sao4+PR+9bt+BnZCSVK54+XTaCTUlJQa9evdCmTRv8888/akkoNHr8/KTZSMruUKal9NWmxqEYHmxM9DGgHSPi1tD4cCxwJ7V6JlpiZj58OBZa+ybfdJ1/JeeJ/HxpxkiHDjLnWVpaitGjR2PevHkYMmSI0s1XOPzw8HBcvHgR/fr1Q0BAAEJDQxV2+G8zd+5cXN60Cdm9e8P+9m3pwdJStKsoEBwsjX0PGYJXc+ag87hxcHBwwM2bN2Fo2AK+qldkIy1eLM3br23FL4slHfE30vTVxkSFiNu0noyImzbw4Zjj5D0+8oqEsHqd0ikUSZCUVYAZvdy1ZlfTc/4xMVIdl8hI6evKGSJHjwJr1oCGDMFGkQitWrXCsmXLFG5aIBDg5MmTCAsLw6VLl9CnTx+MGzcOe/fuVdnhV8Zg1y4cfvECLD5ffoHXapYUEQH9Y8fwiZkZVt69K3+Vb3Nlzhzpt4D166WSDSxW1S0rjYykDwV/f2mohxnx18mxuxkQSQjjmJCPVvB9ncr5IFOAXq2lSr/J2QUoF5Nsv19t0LSc/9attY8KKznPxQBY//lPnV+pCgoKZA7/4sWLeO+992ShIk2ofL5tu64C+/yyiGAM4AeRCKz9+1veyLY5pK82EogIh2J46ORqCU8HRsRNG1TO+Klw/hWbu2sr0wdoSs6/wvErEA/WIZLqxKxcCRgYVHOeBQUFOHXqFMLCwnDhwgX06dMHAQEBCAkJ0azDryAmRvlYNiDVtW/JcsVNOX21kRDHe4Xk7EKsH82sgdAWVib64FgYyhw+ADzgC2Csz4a7jfa+1TcN56+i86ys9V7Qti1OnTqF8PBwXLhwAb1795at9rWq75Wh69dXDV0oAyNXzKAGYbHpMNJjY1gHRsRNm3hzLKrIPCRk5MPbybxWqef6pmk4fzWcp6SkBLdGjsSHhYXo1asXxo0bh507d9a/w68gO1s6P8HIFTM0MMVCkUzEzYwRcdMqvs7muPDoOYqFIhjqsvEwU4CxXbW72K7xO381nacOEfxycpCSkAArBTdW0SghIeq3wcgVM6hA5P2s1yJuzIpebePDsQCRdFWvlbEeioRirSh5Vqbx531pwHnq6urC6vhx9W1Rhfh49TRrAEaumEElDr0Wcfs/RsRN61RM7D7g58ti/95anOwFmoLzb+rOk5ErZtACz14UIfrZSwR0c21+ciBNEKfXss0JGQIk8POhx2ZpPfuq8Yd9mrrzZOSKGbRAeKxUxE3bcWUGKSwWCz4ccyRm5sPKWB+eDmZaX3DX+Ef+Td15dugg1dRXB0aumEEJKkTc+rW1h4N5C1gZ3kTw5pjj36xC3M/I12p+fwWN3/k3deepCZlhRq6YQQkuJ+cgu6CM2a2rkeHDsYBQLMGr4nKtT/YCTcH5N3XnycgVN3vOnDmDtm3bonXr1tiwYYO2zcGhGB5sTfUx0Mte26YwVMK30mjf15kZ+ddNc3CejFxxs0UsFmPu3LmIjIzEgwcPcODAAbmy3YpQIhSjqEyk1k96XjEuPMzGqM7O0GM3/o93S8LNxgQm+mywWEA7R+07/8Y/4QtInd/Zs8qv8AUah/Nk5IqbLdHR0WjdujU8PDwAABMmTMDx48fh7e2tdFtBO28hVo70ryowIZ/Gh44OCz4cC7wsFsLEQPuuV/sWKEJzcJ6MXHGzJCMjA66ubxyti4sLbt26Va3ctm3bsG3bNgBATk6O3LaCenDxgY/6evvOlsZow4i4NUq+H+WLMpFE22YAaCrOH2gezpORK252kJx+KC+vftasWZg1axYAoFsN/9eRnZw1axxDo6MxPZSbjvMHmofzZOSKmxUuLi7g8Xiy1+np6eBwOFq0iIFBMZqW8weaj/Nk5IqbBX5+fkhOTsazZ8/g7OyMgwcPYv/+/do2i4GhTlgk73srAwODwpw+fRpffPEFxGIxZsyYgZUrV9Za3tbWFm5ubnLP5eTkwK6RDF4aiy2NxQ6g8dhSmx0pKSl48eJFnW0wzp+BoRHRrVs3xMbGatsMAI3HlsZiB9B4bNGEHUwiMAMDA0MLhHWqndkAACAASURBVHH+DAwMDC0QdnBwcLC2jWBgYHhD165dtW2CjMZiS2OxA2g8tqhrBxPzZ6g3goOD8fjxY/z555/aNoWhnmGxWEhOTkbr1q21bUqt1Gbnvn37sGfPHvz9999asKzhYcI+CuDm5gYjIyOYmprCysoKQ4cOrZLbXUFwcDBYLBaio6NrbS8kJARsNhumpqayn0uXLsnOp6SkoH///jA2Nka7du1w/vz5GtsKDg6Gnp5elbaePn2q8r0y1B9MP2rcTJ48WSHHP23aNHz99dcNYFH9wjh/BTl58iQKCwuRmZkJBwcHzJ8/v8p5IkJoaCisra2xZ8+eOtvr0aMHCgsLZT/9+vWTnZs4cSI6d+6M3NxcfP/99xg7dmyNkgAAMH78+CptVejMqItYLNZIOwxvaIn9SB1aWh8UiUQNdi3G+SuJoaEhxo4dW0258cqVK+Dz+fj1119x8OBBCIVCldr/999/cefOHaxduxZGRkYYM2YM2rdvjyNHjmjCfPz4449wcnICh8PBjh07wGKx8PjxYwDSEc2cOXPg7+8PExMTXLx4EX/99Rc6d+4Mc3NzuLq6ovIUUUpKClgsFrZt2wYOhwMnJyds2rSpyvWEQiGmTJkCMzMz+Pj4NIo0ucbA2/2oQhbaxcUFaWlpWutHPB4P/fv3h5eXF3x8fPDrr7/KLbdx40ZZP9q1a1eVc2VlZVi8eDFatWoFBwcHzJ49GyWVVuIr0wfPnz+Pjh07wsPDo8b2Tp06hU6dOsHS0hI9e/ZEfHx8rfd4/vx5tGnTBlZWVpg7d65MoiMkJAS9e/cGIH0IL1y4EPb29rCwsICPjw8GDRoER0dH7NmzBz/88ANMTU0xfPhwAMDDhw/Rr18/WFpawsfHBydOnJBdLzc3F8OHD4e5uTn8/Pzw9ddfy64DSENR//vf/9CmTRu0adMGALBgwQK4urrC3NwcXbt2xZUrV2TlBw8eDHNzc1haWkJPTw++vr74999/sX79etjb28PV1VWx0BUx1AmXy6Vz584REVFRURFNmTKFgoKCqpSZMWMGBQQEkFAoJGtrazpy5EiN7e3evZuMjY3JxsaG2rRpQ9988w2Vl5cTEdHRo0epXbt2VcrPnTuX5s2bJ7etNWvWkLm5OVlZWZG3tzdt2bKlxutGRkaSg4MDJSQkUFFREQUGBhIASk5OJiKiqVOnkrm5OV29epXEYjGVlJTQxYsXKT4+nsRiMd27d4/s7e3p2LFjRET07NkzAkATJkygwsJCio+PJ1tbW9l7tWbNGjIwMKC//vqLRCIRLVu2jN59993a3upmTU39SCQSkYeHBz158oSmTZtGFhYWFBcXp5V+ZGlpSR4eHrRlyxYSCATUpk0bSkxMrFI2MjKS7O3t6f79+1RYWEgTJ06s0o8WLFhAw4cPp9zcXBIIBDRs2DBatmyZrK4yfXDDhg3k6elJ9vb2ctu7ffs22dnZ0c2bN0kkElFISAhxuVwqLS2Ve58AaOjQoZSXl0epqalka2tLkZGRsvezV69eRER05swZ6tKlC+Xl5ZFEIqERI0bQxo0biYgoKCiIFi1aJGtTKBTSO++8Q99//z2VlZXRhQsXyNTUlB49ekREROPHj6fx48dTUVERJSYmkouLi+w6FTa9//77lJubS8XFxUREFBoaSi9evKDy8nL66aefyMHBgUpKSig9PZ0sLCzIwMCAzpw5Q2PGjKGePXuSm5sbfffddyQUCmnbtm3k5uZWY7+RXbfOEgzE5XLJxMSELCwsiM1mk5OTE8XHx8vOFxUVkZmZmcwpzpo1i0aMGFFje0+ePKGnT5+SWCym+Ph48vLyonXr1hER0d69e6s5yBUrVtDUqVPltpWYmEgZGRkkEono2rVr5OjoSPv375dbdvr06bIPDRFRcnJytQ/e2w+1t1mwYAF98cUXRPTG+T98+FB2fsmSJTRjxgwikjqUgQMHVrHV0NCw1vabMzX1o+vXr9MHH3wg60eBgYG0bt26RtGPRowYQX///XeVstOnT6elS5fKXiclJcn6kUQiIWNjY3r8+LHs/PXr12XOSJk+yOPxqH///mRoaEj9+vWT297s2bPp66+/rmKfp6cnXbp0Se59AqArV67IXgcEBND69euJqKrzv3DhArVp04Zu3LhBeXl55ObmRhKJRGbjypUrZW1cvnyZHBwcSCwWy45NmDCB1qxZQyKRiHR1dWUPAiKilStXVnP+Fy5ckGtvBZaWlhQXF0fp6elkZmZGffv2pfLycho6dCitXbuWTExMSCQSERGRQCAgAJSXl1drm0zYR0EiIiLw6tUrlJWVYfPmzejbty+ysrIAAMeOHYOuri78/f0BSCeOIiMja4yvenh4wN3dHTo6Omjfvj1Wr16Nw4cPAwBMTU0hEAiqlBcIBDAzk68G6O3tDQ6HAzabjZ49e2LBggWytt6Gz+dXkR+u/HdNx27duoX+/fvDzs4OFhYW+P3336stHa9ch8vlgs/ny147OjrK/jY2NkZpaWmDxjUbG/L6UUJCAlxdXWX9aMCAAcjIyNB6P9q7dy/u3r2Ld999t0rZt/sRl8uV/Z2Tk4Pi4mJ07doVlpaWsLS0xIcffii7B2X64BdffIHly5ejtLQUV69eldteamoqNm3aJDtnaWkJHo9XpQ++zdt9srCwsFqZAQMGYN68eZg7dy7c3d1RVFSEyZMno3Pnzrh+/XqVcFzFPenovHGnXC4XGRkZyMnJgUgkUvpzt2nTJnh5ecHCwgKWlpb4//bOPDyq8vrjnzszWSYhgSBJCFvYF8OiEERQwaUpAgoSCiioUFR+Um0tYlWqqKAFpVq1LhTUItSqlVpAdkEIiiIkyiJ7QDCAmATInpnMct/fH5cJ2TPLTTLJvJ/nyQO5c5f3JjfnPfe853xPXl4e58+fp23btgwZMoQdO3YQFxdH8+bNGTJkCK1atcJoNAJgvtQ4qqr7Kos0/h5iNBpJTk7GaDSyY8cOAJYtW0ZhYSEdOnSgdevWjB8/HrvdzkcffeTWORVFKY07JiQk8OOPP1JQUFD6+b59+0hISPD4XBWJi4vjzJkzpd9XlWlSUY540qRJjB49mtOnT5OXl8eDDz5Y6fxlz5ORkSFVLd2g7HN05MgR4PJzNHPmTJYuXdqgz5HNZmPnzp289tprREaW7zoVFxdX6XfuolWrVpjNZg4ePEhubi65ubnk5eWVGiJ3n8G1a9cSExPDLbfcQkhICMOGDavyfO3bt+epp54q/Sw3N5fi4mLuuusut+6zJv7whz/w3Xff8Z///Ifs7GxCQ0PZs2cPJpOJb775pnS/Nm3acPr0aVT1sk5/RkYGbdu2JTo6GpPJ5NHf3VdffcVLL73EJ598Qk5ODrm5uTRv3hwhBDk5ORw9epQ77riDn3/+maKiohqzuGpCGn8PEUKwevVqcnJy6NWrF2fPnuWLL75g7dq17N27l71797Jv3z6eeOKJarM1NmzYQGZmJgBHjhzh+eefZ8yYMQB0796dq666irlz52K1Wlm5ciX79+9n3LhxVZ7LNRYhBLt37+bvf/976bkqMmHCBJYuXcrhw4cpLi5m3rx5td5vQUEBLVu2JDQ0lN27d1epWPn8889TXFzMwYMHWbp0KRMnTqz1vIFO2eeof//+pKenlz5Hv/vd73jkkUca7Dn65ptvmD9/PiNGjCA5ObnSvhMmTOD999/n0KFDFBcXM3fu3NLPDAYDDzzwADNnziQrKwvQGt5s2rSp9Fh3nsGvv/6azz77jM6dO2MwGEhJSeE3v/lNpfM98MAD/OMf/2DXrl0IISgqKmLdunXlJj1vSE1NZdeuXdjtdrp27UpoaCgdOnQA4Oqrry6XBjto0CDCw8NZuHAhdrudlJQU1qxZw5133lk6yT/33HMUFxdz5MgRli9fXuO1CwoKMJlMREdH43A4mDdvXulb3JYtW2jRogWhoaEEBQWRnJzsddtQGfN3g/j4eBEaGirCw8NFs2bNREJCgvjggw+EEEIsWLBA9O/fv9IxZ8+eFSaTSfzwww+VPps1a5aIiYkRYWFholOnTmLOnDnCZrOVfn7y5EkxbNgwERoaKrp37166SFgVd955p2jZsqUIDw8XPXr0EK+//nqN9zJ//nwRGxsr4uLixNtvvy0AkZGRIYSoHMsUQogVK1aIDh06iGbNmolRo0aJhx56SEyePLl0nIBYvHixiIuLE7GxseKll14qPfbZZ58t3bfs/q5FyUCjuufIbreLqKgo0bt3b1FSUiL69u0rDhw4IIRomOcoMjJSDBs2rMZ7WbBgQelz9N5775WL21ssFjF79mzRqVMnERERIXr27FnuufT0Gdy0aZPo0qVLtefbsGGDSExMFM2bNxetW7cWv/nNb0R+fn6V4y47zorXKxvz37Jli+jTp48IDw8XV1xxhYiOjhbfffedEEKIhx9+WERHR4vmzZuLMWPGCCGEOHDggBg6dKiIjIwUvXr1Ev/73/9Kr5GVlSVGjhwpIiIiRGJionj88cfFzTffXO2YHA6HmDZtmoiIiBCtW7cWL730UmmywLfffitatWolJk6cKFRVFffee6946KGHRHx8fOnxdrtdAOL06dM1/g6l8Q9gDh06JAwGg9fGONCNuZ6sW7dOdOvWTXTu3Fm88MILDTaOr776SgCiT58+ol+/fqJfv35i3bp1dXY9d57Bbdu2iVGjRtXZGNxhz549YsCAAaJPnz5izJgx4uLFi16f6/HHHxf33nuv18c/88wzokePHiIhIUHcfffd1WY21YaUdwgwVq5cyahRoygqKmLKlCkYDAZWrVrl1blOnTpFp06dsNvtmEyNry+QpGHQ8xlsDBw5cgSbzUafPn1ITU1l5MiRvPvuu9xxxx0NOi4Z8w8wFi9eTHR0NF26dMFoNLJo0aKGHpIkwAi0Z7CgoIDk5GTCw8OZMGECs2bNqnZdrj6Rnr9EIpEEINLzl0gkkgBEBmobgtRUWLAANmzQvrdaL39mNoMQMGIEzJ4NAwfW3TiysuD992H/fsjLg+bNoW9f+O1vtQbzkjqhph6+EomvyB6+/sqiRfDYY2CxaEa+OhRFmwhefhlmzNB3DP4y+QQo/tIHVtI0cff5kp5/feIy/MXFte8rhLbfY49p37s7AdTmzdc2+bjUEletgk2b6mbykUgkDY70/OuL1FS48Ub3DH9FwsJg+3ZITKz5/LV58z16wJEjUFLi2bXlBKAr/ub55xTZsDlVYiNDG3ooEh1w9/mSC771xYIFl71qT7FYtOOrY9EibWJZtUoz+mUNv+t4qxX27fPM8MPltw8/MlYSfXnms4M8+MF3DT0MST0jjX99kJWleeTevmQJAevXQ1XqjmVDSXX1Elfb5CNp1PycayHjghdvpJJGjTT+9cH77/t+DkWpfJ7UVPfXEHyhpslH0ujJLbZxsdiG3anWvrOkySCNf32wf3/lUIynWCyIiu3pfAkleUpVk4+kSZBnsSMEXCzyrmWkpHEijX99kJeny2nWfPABQUFBmM1mOoWHY125su5CPRWxWOCHH+rnWpJ6QwhBbrEdgKx8D9eDJI0aafzrg+bNdTnN7XffTXFxMRcvXuTwk08SElrP2Rk5OfV7PUmdU2Rz4lA1ByK70Me3U0mjQub51wdFRb6fw2xG6duXoKAggoKC4OhR30NJnhIVVb/Xk9Q5OWVCPdkF0vMPJKTx9wRv5BAWLdKKpXxFCJg69fL3OoWS3MZshj596veakjonz2Iv/b80/oGFNP7uUFMB1f/+B88+W7UcQmoqYtYsFB8XZYWioIwcWX6C0SmU5DYlJdCvn77nbETaQtOmTSvtK3vgwAEAnnvuOd555x2iL411/vz5jBw5siGH6TGueD9AljT+AYWM+deGuwVUq1Zp+13SJldVlYwZM1B1yMaxCEHK4MHlN/btC/UZ81dVGDu29P58IjUVkpMhPl6bOP/9b1i7Vvv3ueegQwft89RU36+lE1OnTmXjxo2Vts+cObO0d3NjM/wAuRYt7GM0KNLzDzCk8a8JTwqoymjxHHv0UW7t35/Y77/H6OsYzGZ+njWL+xYt4r777qOgoAB11y4yP/kEUd8xf1e1ry8TgJeTaUMzdOhQWrZs2dDD0B2X59/xijBp/AMMafyrw9sCquJi2r32Gn+PjSU4JMSnIQiAW2+l68svs3fvXpxOJ3Nbt8Y6eDCtvvsOxaeze0lxMcya5Z3cg5eTqb9MAFXx5ptv0rdvX6ZNm0ZODdlQS5YsITExkcTERLL9qFgut1jz/LvFRJBdKI1/ICGNf3X4UEBlBnoePozio2euADRrxk8//cS8efNotWIFz1uthAnh8xuFT9UBFguMGeNZWMaHybRGbaGsLFi4EO6+G26/Xft34cJ6qUaeMWMGJ06cYO/evcTFxTFr1qxq950+fTppaWmkpaWVrhH4A7nFdsKCjbSLMpOVX4LUeQwcpPGvCh+1eBQh4OxZXYaSsnIl/fr1I+7MGRaqKmbV9xJ8m8Hgm/EH+PlnGDbMfa9cb2E7P1g3iI2NxWg0YjAYeOCBB9i9e3edXauuyLXYaWEOIjoiBIvdSZHN2dBDktQT0vhXhV5aPDpwpqiImJgYuugQ43cCxcCuK65ADQryfXAWi3thGb2F7fxk3eDcuXOl/1+5ciW9e/euk+vUJbnFdpqHBRMdoYUoZdw/cJCpnlWhhxaP04mqKBh8eI22GgzsU1X+OGkSo198EcVTOeYyCGAD8FarVkzLz8dkt9d2iHu4wjIDB1bfb0BPYbtmzeq+IU4V3HXXXaSkpHD+/HnatWvH3LlzSUlJYe/evSiKQseOHVm8eLHX528o8iy2Us8fICvfSqdW4Q08Kkl9II1/VehUQOVr/NQArGnZktvnzsVhMuGLr24Bvm/WjJTCQp6NjNQ1Ji4sFhzz5lHw/vvY7fZKX3Hbt9NSB2E7tm3Tmtp4u25Q0wRVCx999FGlbffdd59X5/IncortdItpRkyEljYsF30DB2n8q0KnAio1IgJjYaFX4Q6hKOxt04Z8p5OrFYUgh8OnsYQBHQsLsQLHrVau9els5VGEwLlmDdd06kR+SEipBIXra9GZMwzT40J79vi+bvDpp3qMpMmQW2ynhQz7BCQy5l8VOhVQKQUFOLyM/StmM9esXMlnn31GXLg+r+EtFYWR0dFcrSi+L/hWINRs5vjTT5OVlcXZs2c5deoU6enpHDp0iGGjR+tzkaysummIE6AIIbSwT1gQLcxBmGShV0AhjX9VlNXQ8QET2h+Yp76qMJu1vrmX8sJvGDVKl/HEAJ9euEBPIfSvEahJ8lmPydRk8n0RXfYkKEexzYndKWhhDsJgUGjVLERKPAQQ0vhXRUyMptWjQ8aOQQiOKgolRiO1JWk6AYuicHT6dI7cdBOvvvoqw4cP57mVK7H6OBY70E8IQlXV96rj6qiuyEmPyVRVweljGqLsSVCOnEsFXi3CtNWkmMgQ6fkHENL4V8fs2ZqSpY8YgX7BwYRs2IAhORkRGoozOLjcPnaTCSuwp0MHfh0SwnX/+hdJSUkcPnyY+++/n/u+/JJgH1MzTYBv9cZuUJ3kc0wM2YmJeGu6VUUhz8dq6VJkT4JSXNIOzc3a8xjdTBr/QEIa/+oYOFALveiQD68YDLB3L+qKFeTs3cuFRx4hc/hwTlx5JZtiYphrNNIeGHTmDF+XlGC1WgkJCWHFihXcddddDLr9do76EKcX+FjR6wbO4OAqJZ+FEEyfPp1RO3ZgN3r3zuEwGsnp1MnXIWrIngSluOScoy55/tERMuwTSAR2tk9tksIzZsDSpb5XiVosfDJnDnc9+SRmsxmj0YjVasVoNNKhQwd6DRnCr0JD2bFjByEhIZw4cYLg4GB+//vfc88999AtNxduuMGnIdT1LG+z2ej9/PP0372bpKQkrdvY4cOsWLECq9VKi6goZubk8DLgyfK1AA506cKGM2d4FE06w2tkT4JyuDz/FmGa5x8TEcLFohKcqsBoaBDlKEk9EpjG3xN9/thYXS4ZpSiEhYUxePBgbr31VkaMGEHPnj1RLsXyS0pKaNOmDZ999hmJiYmMGzeO7Oxsrr/+ej4qKeFGm80rAy4AFeouzo+2VrFRUchGq3T973//S0REBAUFBbRv35533nmHrVu3snbtWow9esDKlW6fWwF6Hj3KpqgoDIriW8/iig1xAhyXnHOLMp6/KuBCUUlp3r+k6RJ4xt+lLGmxVG1IXHnkq1ZpHbgSEnS5bHFwMNcNHsyHH35YpTRwSEgI48aN4/PPPycqKorly5eTnp7Om888Ax07el0prFC3hh/AYDZzx/bt5A8cSH5+PomJiaSnp6MoCoWFhSxcuJDjx4+TtmgRoePHe3z+MOBPOTnkAsHgXaaSokDFhjgBzuWY/2XjD1quvzT+TZ/Aivl7Iym8d6+WZugLZjO3zZ7NNR07srhLF86PGFGlAuXkyZPZuHw5L7ZsyaKCAs4OGIBx1CiMvma51CEiLAzllVdQBg5k3bp1tG7dmry8PA4cOMAvv/zC1VdfzbZt2zhz5gwHJk/2urmNCWiFl4YftJDP7NneHt0kyS22YQ4yEhqkuQelEg8y7h8QBI7n762ksB4aOE4nxq++Yt7WrThUFVPZjlCuMNO11zJUCDYcOoRiNBLidPp1ZooTKAHmm82op0+z5ZprSE1NZfywYbx7ww1ELFhA5rFjzNi/n3898ggHOnZkyMyZPmkdeU1YWGndhOQyWnXv5YSGUokHafwDgsAx/j5ICrvMlTdepwooDgfKJVXLSj9w15hSUlCAUPA9n70OEYADWGcwsKxNGzbn5GB56SUShWBzRAQ3fPkl6vbtKEBr4DeA5fXXuakuCstqQ1E0j//ll30SdWuq5FrspSEfgFbNpMRDIBEYYR9f9fl9uLQCKKrq20KlH6EAQWYzSQsX0vLXv6aoqIj/E4JtwE0FBYQIUSkjxywEQdSjp2E2axXFY8dqQnDS8FdJXgXP3xxsJCLEJI1/gBAYnr8OJf2KomiepAfNVAS+TRx64UCb5XWb6S0WlMceYz+w+Oqr+e2BAwTpJRHtC61bQ1KSls45dapc3K2FnGIbXaKbldsWHSELvQKFwDD+eujze+C5C0VBMRhQ/CR8o5hM2IXQ1hF0IgR4LTiYq/fs8UlqWldyc+GVV6TRd5Nci52o8PK/PWn8A4fACPvopM/vmgBcFbMOQ/kfnyM4GCtw7qqrwMtqVt1RFIyjRxPyxhuIsDDdTmsErrXZ6l4ywhOkcJvbCCHIK7aXSju4iI4IkZr+AUJgGH+d9PldKJe+nKpKmtHIrpgY/m0wsG3YMK5q2ZKVP/2E8BOvvzTFccYMlJdfhuBg3aQeDNR9DYFHSOE2t7HYndicarmYP1ySeMj38S1Z0igIDOOvkz5/RUKA3kDBzJm80L07awsLedNu58GLF/0i5FNiNPLRgAE8sHgx06ZNY+n772NzOHRbh/CH9YxK1GF67LRp04iJiSnXq/fixYskJSXRrVs3kpKSyPHj9NyylEo7mCsb/yKbk6IS35oHSfyfwDD+dVjSH+R0UvjUU4zKyGDBzp3cVFDQ4N6wKx3zj04nk3fs4L333uOHpUuZsHs3wR4sWDdK6lC4berUqWwsW6MBvPjii9xyyy2kp6dzyy238OKLL9bZ9fWkopyzC1eu/3kZ+mnyBIbx11GfvyJGYJSq8nxxMWH4RxhEATAYOBUfz+IuXfgkJITP8FEUrTFQx8JtQ4cOrSTNsXr1aqZMmQLAlClTWLVqVZ1dX0/yKoi6uZDtHAOHwMj2AS3uvWmT5xW+bmAC/8l4caGqfPbTT9jRtHECggYQbsvMzCQuLg6AuLg4srKyqtxvyZIlLFmyBIBsP2glmWtxGf8KYZ9mUuIhUAgMzx8u6/PrmPHiwh9j364Jya8Nv8Gg39uYnwu3TZ8+nbS0NNLS0oj2gzFejvmX9/xjIqXnHygEjvEHrdLTNQHUQQhI4hkOQFToauY1DSTcFhsby7lz5wA4d+4cMTEx9T4Gb6go5+wiKiwYo2zkHhAElvEHbQLYvl0r/Q8N9Z98/ADDCeSaTKglOhiZBhRuGz16NMuWLQNg2bJljBkzpt7H4A25xXZCgwylip4ujAaFK8KDySqQ6Z5NncAz/qAZiU8/hYwMGD5cCz9I6hUrEGGz+b5AXo/CbXfddReDBw/m6NGjtGvXjvfee48nn3ySzZs3061bNzZv3syTTz5Z5+PQg9xiW6WQjwtZ5RsYNN4F39paMLpDdLTWpjE+3nf5Bx/xRTm0sWE1GNgVEcGQ/HzfBO8MBrj//noTbvvoo4+q3P7FF1/Uy/X1pKKcc1liZJVvQND4XN7UVEhO1gz2s8/Cv/8Na9dq/z73HHTooH3ubt/dOkwDdRcHsA3YClgA/fOR/AMn2r1tvvVWHCEhhPqqdKqqmp6PxGMqyjmXRXr+gUHjMv6LFsGNN2otFq3Wyt66xaJtW7VK22/RIvfOO3u2Fj7wAl+lEuzAOzEx3BoURJKicGV4OAvDw9mgKDSVGksHUKIofG42c3tkJOM2byZUrzetRlJR629UlHMuS3RECOcLbTjVpiFDLqmaxmP8vWnB+NhjtU8AWVmwbRskJCA8jP0XA6qPbwzCaOQvubk4HA6GDx/OgnffZfvAgdzXujXrFEU3HZ6GREHr+DXabmdbQQExMTH8opfxr8OK3qZMTrGNqLBqYv7NQnCqorQKWNI0aRwxf29bMLomgIEDK2eCpKbifOEFlI0bcaoqQWU0b2rT4ReKAqGhzFEU/pqUhPrZZ161J3QCa51Oet10EzfGxrJ+/Xp27dpFfHw8kydPZtSZMygff+zxef0NI/DnkhLUFi2YmJJC7969EQsX4pgzB5PNBwPjqujVY/0ngBBCaGGf6mL+kZfbObq6e0maHo3D+PvQghGLRTv+008pKipi6ammpgAAHGJJREFU586dWP72N361aRPBqlplk5NqJwGzGVQVpWtX8lu0IGnXLr78/HOuE8KrVyinyYTtkUeI+PFHtmzZQl5eHu3bt+f48eMcPHiQW4TgVi/O64+EOJ3MKy5GsVo5d+4ci0+d4kmbzacH0GmzYUxJgWee0TaUfZtw9UYeMUIL6w0c6MvwmxRWu4rNodaY7QNalW+vuPocmaQ+8X/j72MLRoTAtno113fqxJ4zZ3jYZOIFq9UtnZvSScBgwNm9O6qqYvzxRxyHDxOpqpphdjiw4XnXLovBwJKuXfnq1CmioqKYNGkSBw8e1CYni4UWLVpgMBq1+28qWK3smTCBm3Ny6N69O4lBQYx0OLx6axKAcDoRGzagVHW8y1lYtUqT9ZB9fEuprsDLRbTs5RsQ+L/x16E5h8Pp5G6nk+TRo5m1Zo3HOjyKqmI8cgQFLYRRMTfd5T+5k64pFAXFbMb88ss8MmMGj0Bp2EJkZfGlopBlMtFjxAhO7N1LcVaWf0s0eIAiBAk//UR869Z06tSJgXPmYJg40Su9JYVLD68n6z8gJwCql3N2IcXdAgP/N/46tGAMA9pdvEjzLVsweNlr1mX4a9sHtEnABuW6XJUYDAQHBaGMGqWFIRITtbWMBQu0NxtAsVoZdml/+8cf093h8D/BOB9xCsGKUaPodknkjJdf9ng9x6veyDWt/wQYl+Wcqw77hIeYCA82SuPfxPF/469TC8ahPXtyxYED9VJE5er09U1UFG3atcMaGsrn587xVlER/YODUf72Nwbv28f9R44QrKpVTipBlwy/iv80gtcDsxB0KzuZuzzxxx7TQjU1ePJOtJ+FAS9/HmXWfwKZy3LO1bsW0REhUuKhieP/xl+nFoyZBw8SXlJSb5r2RqBVUREZeXk0z83luogIWjRvzrNr1vDSwIEknziByY3GKo0nF9cDcnIqZ+gMHQqnT8Px41rlbpkFfqvBQJDRiDEpCXXzZq/f3hAC1q+H7OyAzgKqTs65LLLQq+nj/8a/b1/NU/Mh9GM3mQgOCsJcjxIORqCbzUb3jIzSbQPMZu6221FTUhrBD74O2bdPq9CG8r9XV6Fd585apbbRCFFR7Cks5H1g8bXXYti6Fbw1/nC5yfuf/uT9ORo51ck5lyUmIpTDv+TX15AkDYD/O5Y6NOcIMpnodu21vo/FQyqFJiwWDA6H12JmAi0MVNs+/owAzcOvrkK7pAQOHdKUV0eOhOXL6fT22/xn61Yce/b4rsEkm7yTW2wjxGTAHFz9kxgdEUJ2vvT8mzL+b/x91d5xNfnwI511b+P3CprxtBsMOCvo4DuDgylBi4v7M27d+6UMHevDD7Owc2eGDh1KWGEhR/UqeAtwSYiaRN1cREeEUFDiwGLz9ydK4i2NI/rgSwtGV5OPrVt9Dh/5AwazGePjj0N4uObB5uRwQVV5IyWFY0OH0vvoUf54+nSTSA8NVVX+cPIk1ygK1wqh38Ma4JIQuZbq5ZxduHL9zxeW0L5lU3iaJBXxf88fvG/BWLbJRz33dq0rFIuFvD17SL/jDo4/8wybHn6Ynrt383m/fpzIz2fc5s3sGDuWIi7JUDRyQoBhQhCKTp5KHTd5bwzkFlcv7eAiOlL28m3qNA7PHzxKCURRKjf5cIWPVq3yTUPeD9i5YQP37tyJqqrk5ORgMBj47rvviIyM5LrrriM3N5f+isKTwBhqr0/wZ3Sfvhqgybu/kWex06EWb/5ylW/jflOWVE/j8PxdVGzBWFGG2WzWto8dq+1XsZrTB+lmfyLfYKCoqIgLFy6gqioOhwOHw8GFCxe4ePEiQgiORUYyXlH4pYHH6qpT8Av8vMl7fVGToqeLGFnl2+RpPJ6/C1cLxuxsLWXvUtybqCjtdX7q1Or/uF3ho0ce8S1dsAGxGQz0iI7mn5mZNA8KwhEeTsSQIRwdMoSThYX8/e9/Z/r06djtdtYtXUqMN+skemA2gxDkBQURVVDQMGOoSAM1efc33FnwvaJZCAZFGv+mTOMz/i6io73L1U5MbNCuXb4SpKp0P3OGfq4NublYN2zg2g0b2GQ0cqJdO/bu3cvu3buZ26wZjuLiepOIuBAWxi+tW+OMiKCwc2eyRoxg8DvvuN9VrS6p4ybvHTt2JCIiAqPRiMlkIi0trU6u4ytWu5MSh1przN9oUGgZLts5NmUar/H3lgULGq3X75J5qBi4crVDHOVw8OuMDP505gyn4+PpePZsvVU0A+T068fGceO4ePGiFoLavJlmGRnE1uMYKlHV+k8dsW3bNlq1alWn1/AVdwq8XERHhJAlc/2bLIFl/H2Vh25gantfMQJGVeUVo5HWJSW0j4ysv9RWs5muY8cya9as8tsXLtR09es7xdZohKAgLcbvEtKT1CrnXJboiBDO5FgQQqDUwdvyR7sz+PbHC7w64SoMhsb7Nt5YaVwLvr6igzy0AFSjf+fPBNvtPJ6ZSav6zGevLoumoTJruneHjAxtfageDL+iKPz6179mwIABLHEplpZhyZIlJCYmkpiYSHZ2dp2PpzpyimrX9XFxc49ojmYWsO1o3fSUeP/rU6ze+zNr9v9cJ+eX1ExgGX8d5KEV4HxcHNxzD9x2m/ZvQoI+46sCb99RDHY7JenpeNn/zCOcQOaAAVUvtMfEoA4f7nOvY49JTKzXrJ6vv/6a77//ng0bNvDWW2/x5Zdflvt8+vTppKWlkZaWRnQDZhvluTx/N8I+k6+Np3OrcF5Ydxi7s3YRQk/4OdfC0cwCjAaFFzcckZXEDUBgGX+d5KH3ZGXx5f33w5o1sHw5LF3qeQGaG/gi5WwEurihGqoHVmDygQNMmjSJX365nFyan5/Pq6++yh27dmGrT+PfAIVcbdq0ASAmJoaxY8eye/fuer2+u+S6IefsIsho4KlRvfgxu4gPvv1J13FsP6a9/cwdncC5PCvvfPWjrueX1E5gGX+d5KF733ADEydO5PTp09oGbyuQa8FXc6kqCs6OHes0u8keFMTLrVvzjc3Gpk2buPLKK1mwYAGzZs2iU6dO7Nq1i6dXryb0zTfrZIKsknou5CoqKqLgUjprUVERn3/+Ob17966363uCO3LOZbm5ZwzXd23Fa1vSyb3UBEYPth/Npk3zUCYP6sCI3q1ZlHKCX/JkQVl9EljGv29frQjMF8xm2g4fzqOPPsrYsWOxuHTnZ8y4PAH4SSqpWQia9epVN4VtioI9KIh/JiTwzM8/s2zZMgByc3N56qmn+OCDD/jwww/5+OOPueaaa8r9fOo0BNQAhVyZmZlcf/319OvXj2uuuYZRo0Zx66231tv1PSG32E6wyYA5yL11K0VRePq2XhRY7by2Jb3GfXekn2f9D+dqPafdqfL18fMM6xGNoijMHtELpypYuOmIW2OS6IQIJDIzhQgNFULzDb37Cg0VIitLqKoq7rzzTnH33XcLVVUvXyM1VYjkZG0/s7n8sQaDb9f25uu224R4+20hwsI8Ok4FoSqKECEh5bYXgXAGBwuRnCyKtm8XLVu2FEuWLBFDhw4V7du3F6NHjxZhYWHCaDQKs9ksZs6cKQoLCyv9fEqMRmGri59HWJh2DT9mwIABDXbtJ/67Twx8YbPHx/35f/tF59nrRHpmfpWfL93xo+j45FrR7an1IrfIVuO5dp44L+KfWCs2/HCudNuC9YdF/BNrxb7TOR6PTVIed5+vwPL89ZKHjtY8lvfee48DBw7w+uuvX97HVYGckQFz58I997A5NJTCESO0DlX1TVSUV28lrlaUqCpccw3cdhsZw4bxotlMv6goMl59leWHDiGE4Omnn+bBBx/kxIkTrF69mszMTP7whz/gcDh44403iI+PZ926ddqJL/18nM88g1BVfaUf6riQqyngTnVvVTya1J2wICN/WXe43HZVFbyw9hDPrTlE/w5R2Bwqn+07W+O5Uo5mYzIoXNf1itJtD93UhVbNgpm3RnumJPVAnU5B/sju3R57wTV5lSdPnhSxsbFiy5Yt1V5y4MCB4tRDD/n+1uHhl81kEkXPPXd5IKmpQlx1lVC9ue+33xZCCDFnzhwRFhYmgoKCxO233y4++eQTERUVJfLy8irdd2ZmpkhOThYGg0EYjUZx4403irNnz3r1JlLjl6KUG6O/05Ce/8TF34jxi77x6tjF24+L+CfWipSjWUIIISw2h/jdB9+J+CfWijmrfhAOpypufe1Lcdvfv6rxPMNf3S4mLq48hg93/STin1gr1uw769X4JBrS868OPeShy9CxY0c+/PBDJk+ezMmTJ6s8NDY2FsOBA/Ve6CRUlT6vvMLUqVPZtWsXQlXh2DHPF5KLi1EffZR5Y8bwxhtv0KFDB8LCwhgwYADjx48nKSmJpUuXVjosJiaGTz/9lMOHD3PVVVexfft2xnXogO2RR7zrzVCR2oT8JJVwR865OqYM6Uj8FWG8sPYQ5wtLuOe9Xaz74Rx/HtmTuaMTMBoUxg9oxw9n8zhSTQvIzHwrR34p4MYelZsrTUhsT8/WESxYfwSrXaZ+1jWBZ/zBszCIolw2/NUYl5tvvpnZs2czduxYioqKKn0eGxuLevGiHiN3H0Uh+I47+PbECa688komTZrEtl//GtXiXea/sFoZf/w46enp7N+/n969e/PXv/6VLVu2MHPmTF5//XWc585pFb133w233679u3Ah3aOiSEtLY+vWrcwxmTB6K6+hKNC+/eX6irlz67WQqymQZ7ET5aXxDzEZmT2iF+lZhdz8cgr7Tufxxl1XM31ol9IK4DuubkuQUWFF2pkqz7H9qJbiOax75QV5o0Hhmduv5Gyuhfd2VO1ISXSkjt9A/JuaFmfNZm17crJbC4iqqop7771XTJw4sfwCcGamWH/jjeJiixb1GvKpGKJynjsnHEFBvp3z0mK3EEJcvHhRtGvXTkRGRorMtWvFtqgo7fwVQ1uun+PYsUJs3ChUnRbcGzMNGfbp8fR68Zd1h7w+XlVVMemdnaLPsxvFtyfOV7nP/y1PE/3nfS5sDmelz2Z8kCYG/WVL+b+RCjywLFVcOWeDyMy3eD3OQEaGfdyhisVZb71KRVH4xz/+wYkTJ/jrX/+qKVkmJ0N8PL/6+muicnPr4YYuUUWIyrB8OUZfZSkUpVQiIyoqim3btjHVaiXi9tsZmpurefRVNWW3WrUmOrfdhuL08XW+zBgknmG1O7HaVZqbvdd5VRSF96YMZMeTNzOo8xVV7jM+sR0XimxsPVJeFsLhVPkq/TzDukfXqBX055G9sDlVXtl0zOtxSmonsITdqsNbeegKmM1mVq5cyRsJCTieeQaTzQZC1Jukco0KljpIW2CxaP0TLtF182b+pigYhaj9WCHA4fDt+lWMQeI+eR4WeFVHaJCR0BrqBIZ1jyY6IoQVaWcYntC6dPv3GbkUWB3c2KPmGoyOrcKZOqQj7+44yT2D4+ndVp/iTEl5AtvzrwParVnD/JISTCUlmsHTC0WBNm2862AGuklbkJOj/ZuaCo89hrGkASR/XWOQeIQncs6+YDIaSL66LduOZpVrBpNyNAujQeG6brXLXj98czeiwoJ5fq1M/awrpOevJ3VpEM1mWL0a4uM972AGuklb4FIKXbBA88IbgvpUK21CuOQZvF3w9YTxie1Y/OWPrNpzlgeGdgY0PZ8BHaKIDK39+s3NQcxM6s6cVQfYdDCTW3u3rvWYqhBCHzlqfzuPHkjPX0/qyiCWjeG7QlTLl18WlvvTn2qXM+jbV9O39wWXYFpD9kVoANG2pkLOJc/f21RPT+gaE8HVHVqw4rvTCCHIKrBy8Od8htUS8inLXQPb0z22GfPXH6bE4dlaUYnDyaP/2cuwv6Zw+FzVaafu8v7XJ7n1ta/It/rWBOqj3Rlc9+JW0k7Vc+ZfNUjjrxd1YRDdSDP1CF87mAmhvWE05IKrawwSjymVc66lebtejB/QnmOZhew/k1ea4llbvL8sJqOBp0ddScbFYpZ9c8rt4/KK7dz73m7+t+cs+VY7E/6xk6+Pn/d0+AD8kmflpY1HOZpZwFtbj3t1DoCLRTbmrz/Mz3lWJr27yy0NpLpGGn+90NMg6l28lJqqZS/5QlnBND0Wj30dg8RjLsf86ycF4bZ+cYQGGVjx3WlSjmUTExHClXGRHp1jaPdobu4ZwxtfHOe8G/2Ez+QU85t/fMP3GTm8fudVrP/DDbRpYWbKP3fzv++rrj2oib9uOopTFQzrHs3Sr0/x04XKdTzu8NqWYxTbnHzyf4Pp07Y5D334Pe82sIy1NP56oZdB7NRJ/+IlPcJRZrPWDhH0Wzz2ZQwSj8m12Ak2GggLrp9OdJGhQdya0JrVe3/mq2PZtaZ4VsefR/bCYnfy6uaaUz8PnM0j+e1v+CXfyvJpgxhzVVvatDDzyYODuaZTSx79ZB9vbk13ewF5/5lcPv3+DNOu78TC3/TFZFRYsN5z5dFjmQX8e1cGkwd14JpOLfn3/YO4NaE1L6w7zNw1B3GqDbOgLY2/XuhlEBMS3Ivhu4sO4SgBZD30EB8cOcLvf/97Nuzcqc/YPEGKtvmMS9qhPhccxye2p8DqIN/q8CjeX5auMc24+9p4PtqdUa1sxPZj2UxcvBOTQeHTGUMY3OVyDUJzcxDv//Yaxl7dlpc/P8afV/6Ao5bOZEII5q05RKtmwTx0UxdiI0P53Y1d2HjwF7798YLbYxdC8PzaQ4QHG/njr7oDWqrsm5P6M+26Tiz9+hQP/ft7j+Us9MiAktk+eqF3No1e6BCOsqH1oN2XlMSgQYPoMX484v33UXx50zGZtDCOw1HzxFRT7YLEbYQQnL5YXG8hHxeDO19B2xZmzuVZuKGr9w7NH3/VjZV7znL/sjQ6tQov95kqBN/+eJEesREs/e1AYiMr9+wINhn424R+tG1h5s1txzmXZ+WtSf0JD6naBK7/4RfSfsphQXIfIi5lJ91/Q2c+2n2a59ce4rOHr8foRtP5lKPZfJV+njm3XUnL8MtrLS4pi7ZRZl5Yd4jJ7+7inXsTy+1THV+lZ/P3L9L559SBpWPzBun564VOjWJ0z2TRIRwVAjw9ejQrVqzgscceo/PcuT53GcNkgnXrtHUNb2sXJG5hd6r86b/72XH8PL+6MrZer20wKDw5oicP39TVpyyjFmHBvDy+H60jQykqcZT7sticjL26LZ88OLhKw+9CURQeG96D+WP78FX6eSYu2UlWQeW/Davdyfz1h+nZOoIJie1Lt4cGGXliRE8O/pzPp9/Vvn5gd6q8sO4QnVqFc8+18VXuc9/1nXh7Un9+OJvHuEXf1LqmsCLtNL9dmkqB1UGxr32P60RcIhDRsVGMrtx2mz5aQbfdVv68Y8dqUsrenEtRNM0kF1lZQixcKMQ992jXuece7ftGruFTHfWp7ZNvsYm73/1WxD+xVry6+WiNmjqBxNbDmaLXnA1iyIIvKjWoeXNruoh/Yq34+nh2peNUVRVj39ohEl/YLAqs9hqvsXTHjyL+ibVi88Ffah1P6skLot/cTaL/vM/FnozKDW1UVRWvbT4m4p9YKya/863It1TfMEdq+9Q3OjaK0ZW6CkfNnu19e8iKC7fe1i74CRs3bqRHjx507dqVF198saGHU8oveVYmLP6Wb05cYOG4vvzxV939psCoobmpZwz/mT6YEofKuEU72X1Sy73PKrDy9rbjJF0Zy5AulSuRFUXhmdsTyC4oYVFK9amfucU2Xt2SznVdr+CWXpXlqyuS2LEln84YQliIkTuX7GTLoczSz+xOlSc//YFXtxwjuX9bn8M9LqTx1xM9DaJe1FU4Sue+CI0Vp9PJQw89xIYNGzh06BAfffQRhw4dauhhcSyzgOS3vybjQhH/nDqQCQPb135QgNGnXXNW/m4IVzQL5u53d7Fm38+8sukYNqfKn0f2qva4q9q3YOzVbXnnq5Ocvlh1X4rXv0inwGrn6VFXuj3hdoluxv9mXEf32Aim/yuNf337E4UlDu5blsZ/0k7zh5u78sr4fgSb9DHbihBSOENXFi2Cxx7zrFmJnoVcFcnK0iQhfIn7h4ZqqadVeeKu+7VYAnLhdufOnTz33HNs2rQJgAULFgAwu4aJPDExkbS0tErb1+z7mcx839OFSxwq/9h+AnOQkaW/HUhCGymMVhO5xTYeWJ5G6qkcFAXuu64TT992ZY3HnMuzcNPLKfTvEMXNPct79janyt8+P8aEge2ZP9bzNbxim4Pff7iHL45kERsZwvlCG3+5ozd3XtPBreOre74qIrN99MZl2PzFILrCUatWeZfuWVs4asYM7S1gwQJYv17bv2xNgdmsXXfkSO3Npol4/C7Onj1L+/aXvep27dqxa9euSvstWbKEJUuWAJCdnV3luZZ9c4q0n/QRrevZOoL3pg6kbQsv30QDiBZhwfzrvkE8/t/9fJ+Rw+9v6VbrMXHNzcxK6sFf1h/mmxOVUz/bNA/l0aTuXo0nLNjE4nsGMG/tIVbtOcu7UxK5qYrOZ74iPf+6Ii3NfwxiairceKN3rRPDwrRsG3fGmJ3tnehcI2bFihVs2rSJd999F4B//etf7N69mzfeeKPaY6rzzIpKHDh1+nNsFmzC4EYqoqQ8qio8+rlV9zszBxkJMvoennGqwq2U0rJIz7+hcTWK8QeD6IrPexuOcndy0qkvQmOiXbt2nD59uvT7M2fO0KZNG6/OVV3OuaT+8HTCrOvfmaeG3xPk01bX+ItB9LdwVBNh4MCBpKenc/LkSdq2bcvHH3/Mhx9+2NDDkkhqRWb7BBIzZmghHFlYpRsmk4k333yT4cOH06tXLyZMmEBCQkJDD0siqRUZ8w9U/CEcFaC0atWKjh07VvlZdnY20QH085f3qz+nTp3i/PnaJayl8ZdI/Ah3F+uaCvJ+Gw4Z9pFIJJIARBp/iUQiCUCk8ZdI/Ijp06c39BDqFXm/DYeM+UskEkkAIj1/iUQiCUCk8ZdIJJIARBp/icQP8NeeAHoybdo0YmJi6N27d+m2ixcvkpSURLdu3UhKSiInRx9hO3/g9OnT3HTTTfTq1YuEhARef/11wH/uWRp/iaSB8deeAHozdepUNm7cWG7biy++yC233EJ6ejq33HJLk5r4TCYTr7zyCocPH+bbb7/lrbfe4tChQ35zz9L4SyQNzO7du+natSudO3cmODiYO++8k9WrVzf0sHRn6NChtGzZsty21atXM2XKFACmTJnCqlWrGmJodUJcXBz9+/cHICIigl69enH27Fm/uWdp/CWSBqaqngBnz55twBHVH5mZmcTFxQGasczKymrgEdUNp06dYs+ePQwaNMhv7lkaf4mkgakq21r22m06FBYWMm7cOF577TUiIyMbejilSOMvkTQwevYEaGzExsZy7tw5AM6dO0dMjP4dqxoSu93OuHHjmDx5MsnJyYD/3LM0/hJJA1O2J4DNZuPjjz9m9OjRDT2semH06NEsW7YMgGXLljFmzJgGHpF+CCG477776NWrF48++mjpdn+5Z1nhK5H4AevXr+ePf/wjTqeTadOm8dRTTzX0kHTnrrvuIiUlhfPnzxMbG8vcuXO54447mDBhAhkZGXTo0IEVK1ZUWhRurOzYsYMbbriBPn36YDBofvb8+fMZNGiQX9yzNP4SiUQSgMiwj0QikQQg0vhLJBJJACKNv0QikQQg0vhLJBJJACKNv0QikQQg0vhLJBJJACKNv0QikQQg/w+F8nKGeLpWkgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d77b6202b0>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4FVX6wPHvm06A0EtCgNAhVAHpNkQBAVFA1y6WVVF3XdefdXV17bq7rm6xYK+IigoCotilCaGXUEJNICEBEhLSc3N+f8xELyE9t+f9PM99cu+dmTPv3Ml975kzZ86IMQallFL+L8jbASillHINTehKKRUgNKErpVSA0ISulFIBQhO6UkoFCE3oSikVIDShK78hIvtEZJy346hOVXGKyBkissPTMamGQRN6gLGTSb6InBCRTBFZJCIdK5jvERExIjKsmvL6ichXInJERE65aEFEWorIZyKSKyL7ReSKKsqaKSIOO7ayx9l12lA/ZYz52RjTq7r57P3znidiUoFDE3pgmmKMaQJEA4eB/zhPFBEBrgaOAddWU1Yx8BFwQyXT/wcUAe2AK4GXRKRvFeWtNMY0cXr8UN3GuJuIhHg7Bk9qaNvbkGhCD2DGmALgEyC+3KQzgBjgDuAyEQmroowdxpjXga3lp4lIY2A68JAx5oQxZhmwAOvHot5E5Gq71n9URP5SblqQiNwnIrvt6R+JSEun6dc4LfuQczOIXfv9RETeE5FsYGYNyhshIitEJEtENtbgyGKQiGwSkeMiMldEIuxyzhaRFKdy7xWRgyKSIyI7RORcEZkAPAD8zj6K2WjPGyMiC0TkmIgkicjvncppJCJv20dliSJyT7n17LPXtQnIFZEQp+3NEZFtInKx0/wzRWS5iPzL3uY9IjLKfj9ZRNJFpLrKgPIwTegBTEQigd8Bq8pNuhb4Aphrv55cx1X0BBzGmJ1O720Eqqqhn2Y33+y0E22FtUURiQdewvpxiAFaAbFOs/wRuAg4y56eiXW0ULbsi1hHDNFAM6BDuVVMxfqxaw68X015HYBFwONAS+D/gHki0qaK7bwUmAB0AQYAMyvYxl7A7cDpxpimwHhgnzFmCfAkMNc+ihloLzIHSLHjmwE8KSLn2tMeBuKArsB5wFUVxHQ5MAlobowpAXZj/bg3A/4GvCci0U7zDwc2YX32HwAfAqcD3e3y/ysiTar4DJSnGWP0EUAPYB9wAsgCSoBDQH+n6ZFANnCR/foVYH4Nyu1u/buc9N4ZQFq5934P/FBJGV2xElwQ0B/YBtxfybx/BT50et0Yq2lnnP06ETjXaXo0VvNQiL3snHLb7LzsI8BP5dZXVXn3Au+Wm/8r4Noq9sFVTq+fBV62n58NpDh9punAOCC0XBmPAO85ve4IOICmTu89BbxlP98DjHeadmPZepxiur6afbwBmGo/nwnscprWHzBAO6f3jgKDvP0/r4/fHlpDD0wXGWOaA+FYNcAfRaS9Pe1irES/2H79PjCxmtpmZU4AUeXeiwJyKprZGLPHGLPXGFNqjNkMPIpV06xIDJDstGwuVgIp0xn4zG4OyMJKyA6stvzyy+aVWxbn6TUorzNwSdk0e/oYrKRfmTSn53nAKTVZY0wS8Ces5J0uIh+KSEwl5cUAx4wxzp/tfn478jhpmyvYvlPes5ulNjhtUz+gtdMsh52e59sxl39Pa+g+RBN6ADPGOIwxn2IlpjH229difQkPiEga8DEQinU4Xls7gRAR6eH03kAqaG+vLERAKpmWilUrBX5tPmrlND0ZmGiMae70iDDGHLSXjXVatlG5ZcvW7ayq8pKxaujO0xobY56u4XZWyhjzgTFmDNaPhgGeqSS+Q0BLEWnq9F4n4KD9/KRtxumzc15d2RMR6Qy8ivWD38quAGyh8v2h/IAm9AAmlqlACyDRbgs+F6vNfJD9GIiVRCo8wWWXEQGE2a8jRCQcfq01fwo8KiKNRWQ0Vtv0u5WUNVFE2tnPewMPAfMrCf8TYLKIjBHrpO2jnPz/+jLwhJ2YEJE29raWLTvFPokXhtU+XF2iqqq89+zyxotIsP0ZnC0isZWWVgMi0ktExtqfZwFWjddhTz4MxIlIEIAxJhlYATxlr38AVs+j9+35PwLuF5EW9n6+vZrVN8ZK8Bl2LNdh1dCVH9OEHpi+EJETWG3lT2C19W7FOsG4wRjztTEmrewB/BsYICIVfaE7YyWaslp3PuB8YcytQCOstuA5wCx7XRU5F9gkIrlYTT6fYp38O4Vdxm1YJ+NSsU5SpjjN8gJWj5qvRSQH68TvcKdl/4B1Ei8VqwkoHSisJK7qykvG+qF6ACsBJgN3U//vTzjwNHAEq4mmrb0OsI6cAI6KyDr7+eVYJz4PAZ8BDxtjltrTHsX6fPYC32D9qFW6vcaYbcA/gZVYPx79geX13B7lZWKM3uBCBTa7J0YW0MMYs9fb8XiCiMwCLjPGnOXtWJTnaA1dBSQRmSIikWL1lf8HsBmrp0dAEpFoERktVn/6XsBdWLV41YBoQleBaipW08QhoAdWbTWQD0fDsLqg5gDfYZ2beNGrESmP0yYXpZQKEFpDV0qpAOHRQXpat25t4uLiPLlKpZTye2vXrj1ijKn24j+PJvS4uDgSEhI8uUqllPJ7IrK/JvPVucnFvrhhtVgjz20Vkb/VtSyllFL1V58aeiEw1hhzQkRCgWUi8qUxpvzIfkoppTygzjV0Yzlhvwy1H9plRjU4JY5Snli0jT/P3eDtUFQDV69eLva4FhuwLqteaoz5pYJ5bhKRBBFJyMjIqM/qlPI5+UUObnlvLa/+vJdP1x8kMTXb2yGpBqxeCd0ezW8Q1ihvwyoaC8QYM9sYM9QYM7RNm7qM0KqUbzp6opDLX13Ft9vTuXt8L0KDhU/WplS/oFJu4pJ+6MaYLOAHrDu0KBXw9h/NZfpLK0hMzeblq4Zw2zndGdenHZ+vP0ixo9Tb4akGqj69XNqISHP7eSOsu65sd1VgSvmqjclZTHtxBVn5xXzw++GM72vdO2TGkFiO5hbxww5tWlTeUZ8aejTwvX3T2TVYbegLXROWUr7pu+2HuWz2KiLDg5k3axRDOv96H2nO6tmG1k3C+TihopsFKeV+de62aIzZBJzmwliU8mkfrj7AXz7fQnx0FK/PHErbphEnTQ8JDmLa4A68sWwvR08U0qpJuJciVQ2VjuWiVDWMMTy3dCf3fbqZMd1b8+FNI05J5mWmD46lpNQwf8MhD0eplCZ0papU7Cjlnk828e9vd3Hp0Fheu3YojcMrP7Dt1b4pA2Kb8bH2dlFeoAldqUrkFpZw49sJfLw2hT+N68Ez0wcQGlz9V+aSIbEkpmaz9dBxD0Sp1G80oStVgfScAn43eyXLko7wzPT+/GlcT0Squ8+0ZcrAGMKCg/g4QWvpyrM0oStVzu6ME0x7cQW703N57Zqh/O70TrVavnlkGOfFt2P+hoMUlWifdOU5mtCVcrJ2/zGmv7SCgmIHc28ewTm929apnBlDY8nMK+a77ekujlCpymlCV8q2ZEsaV7z6Cy0iw/h01mgGxDavc1lndG9N26bhfLJW+6Qrz9GErhTw9op9zHp/LfExUcybNYpOrSLrVZ7VJz2W73dkkJFT6KIolaqaJnTVoJWWGp76MpGHF2xlXJ92fHDjCFo2DnNJ2TOGdMBRapi/4aBLylOqOprQVYNVWOLgzo828MqPe7hqRCdevmoIjcKCXVZ+97ZNGdSxOR8npGCM3ipAuZ8mdNUgZRcUM/ONNczfcIh7JvTisan9CA6qWbfE2rhkaCw7Duew5aCOk67cTxO6anBSj+dz6csrWbPvGM9dOpBbz+5e4z7mtTV5QAxhIUF6clR5hCZ01aDsSMth2osrSMnM563rhjFtcKxb19esUSjj+7Zn/sZDFJY43LoupTShqwZj5e6jzHh5BY5Sw9ybRzCmR2uPrPeSIbFk5RXzbaL2SVfupQldNQgLNh7i2jdW0z4qgs9uG03fmGYeW/fo7q1pHxWht6dTbqcJXQU0Ywyv/rSHP85Zz6BOzfnkllF0aN7IozEEBwnTBnfghx3ppGcXeHTdqmHRhK4ClqPU8OjCbTyxOJFJA6J55/phNIsM9UosM4bEUmrgs/XaJ125jyZ0FZAKih3c/sE63ly+jxvGdOE/l51GRKjr+pjXVtc2TRjSuQWfrNU+6cp9NKGrgJOVV8TVr//Ckq1pPDipDw9NjifIDX3Ma2vGkFh2pZ9gY4qOk67cQxO6CigpmXnMeHklG5OP89/LB3PjGV29HdKvJg2IJiJU+6Qr99GErgLG1kPHufjFFaRnF/DuDcOYNCDa2yGdJCoilAl927NgwyEKirVPunK9Oid0EekoIt+LSKKIbBWRO1wZmFK18fOuDC59eSWhQcIns0YxvGsrb4dUoRlDOpJdUMLSbYe9HYoKQPWpoZcAdxlj+gAjgNtEJN41YSlVc/PWpnDdm2vo2DKSz24bTc92Tb0dUqVGdWtFTDPtk67co84J3RiTaoxZZz/PARKBDq4KTKmamL/hIHd9vJHhXVvy8S0jaRcV4e2QqhQUJEwfEsvPuzJIO6590pVruaQNXUTigNOAXyqYdpOIJIhIQkZGhitWpxQAuYUlPLEokYEdm/PmzGE0jfBOH/Pamj7Y6pP+6XqtpSvXqndCF5EmwDzgT8aYU8YINcbMNsYMNcYMbdOmTX1Xp9SvXvlpD+k5hfx1cjxhIf5zfj+udWOGxbXUPunK5er1LRCRUKxk/r4x5lPXhKRU9VKP5zP7p91MGRjDkM4tvB1Orc0YEsuejFzWHcjydigqgNSnl4sArwOJxpjnXBeSUtX7+5IdlBq4d0Ivb4dSJxcMiKZRaLCeHFUuVZ8a+mjgamCsiGywHxe4KC6lKrUxOYtP1x/kxjFdiG1Rv5s5e0uT8BAm9m/Pwo3aJ125Tn16uSwzxogxZoAxZpD9WOzK4JQqzxjDYwu30bpJGLPO7ubtcOplxpBYcgpL+GprmrdDUQHCf84kKQV8uSWNhP2Z3HV+L7/p1VKZEV1aEduikTa7KJfRhK78RkGxg6e+TKR3+6ZcOrSjt8Opt6AgYfrgWJYlHeFQVr63w1EBQBO68htvr9hH8rF8HpwUT7APjJ7oCjOGxGIMfLpOa+mq/jShK79w5EQh//0uibG923rsXqCe0LFlJCO6ap905Rqa0JVfeP6bneQXO3jggj7eDsXlZgzpyL6jeazdn+ntUJSf04SufN7Owzl88MsBrhrRme5tm3g7HJeb2K89kWHBfJygzS6qfjShK5/3xKJEmoSHcMe5Pbwdils0Dg9hUv9oFm1OJa+oxNvhKD+mCV35tB92pPPjzgz+eG4PWjQO83Y4bjNjSCwntE+6qidN6MpnlThKeWJRInGtIrlmZJy3w3GrYV1a0qllpDa7qHrRhK581pw1yexKP8H9F/Txq9EU60JEmDEklhW7j5KSmeftcJSfCuxvifJb2QXF/GvpToZ3acn58e28HY5HTBts3R/m03UHvRyJ8lea0JVP+t93SWTmFfHQ5HisgT0DX2yLSEZ1a8Una1MoLdU+6ar2NKErn3PgaB5vLt/H9MGx9OvQzNvheNQlQ2M5cCyPNfuOeTsU5Yc0oSuf8/SSRIKDhLvH++dY5/Uxvm97moSH8LEO2KXqQBO68imr9x5j8eY0bjmrm8/f8NkdIsOsPumLN6eSW6h90lXtaEJXPqO01PD4om20j4rgpjO7ejscr7lkaCx5RQ6+3KJ90lXtaEJXPuPzDQfZlHKceyb0olFYsLfD8ZohnVvQpXVjPk5I9nYoys9oQlc+Ib/IwbNLdjAgthkXDerg7XC8qqxP+i97j3HgqPZJVzWnCV35hNk/7SEtu4AHJ8UTFCBjndfHxad1QATm6TjpqhY0oSuvO5xdwMs/7uaC/u0Z1qWlt8PxCTHNGzGme2vtk65qRRO68rq/f7UDR6nhvgmBN9Z5fcwYEsvBrHxW7T3q7VCUn6hXQheRN0QkXUS2uCog1bBsOXiceetSuG50HJ1aRXo7HJ8yvm97moaH6E2kVY3Vt4b+FjDBBXGoBsgYw2MLt9EiMozbxnb3djg+JyI0mMkDY/hycxontE+6qoGQ+ixsjPlJROJcE4pv2380l5veWcuOwzneDoWQIOGWs7px1/k9/Xqck6+3HeaXvcd47KJ+REWEejscn3TJ0FjmrD7A4k2pXHp6R2+HUyPbDmVz83sJJB/L93YoPuWbP5/l9jtu1Suh14SI3ATcBNCpUyd3r84tNiZncf1ba3AYw+3ndPd6L4yk9Bz++30Sh7LyeXr6AL8cWraopJSnFifSo20TLveTROUNp3VsTtc2jflkbYpfJPRlu45wy3traRoRwh/Hdgc/rnC4WotI91da3J7QjTGzgdkAQ4cO9bvT9d9tP8xt76+nddMw3rpuGN3aeP+elsYY/vtdEv9cupP0nEJeumowTf2shvvOyn3sO5rHW9edTkiw//0geUpZn/Rnl+xg35Fc4lo39nZIlfpsfQp3f7yJ7m2b8OZ1pxPdrJG3Q2pw9JtUhQ9XH+D376yle9smzJs1yieSOVhf8j+c24O/zxjAqj1HufSVVRzOLvB2WDWWmVvEv7/dxZk923B2r7beDsfnTTstliAf7pNujOHFH5K4c+5GTo9ryUe3jNRk7iWa0CtgjOG5pTu579PNjOnemg9vGkHbpr43UNQlQzvy+szTOXA0l2kvrmCXD7Tv18QL3+7iRGEJD07Sboo10b5ZBGf0aMM8H+yT7ig1PDR/C88u2cGFA2N46/rT9XyIF9W32+IcYCXQS0RSROQG14TlPcWOUu75ZBP//nYXlwyJ5bVrh9I43O0tU3V2Vs82zL15JEWOUqa/tILVe317HO2k9BO8u2o/lw/rRM92Tb0djt+YMSSWQ8cLWLHbd/qk5xc5uOW9tby36gA3n9WV5383iPCQhjsGjy+oV0I3xlxujIk2xoQaY2KNMa+7KjBvyC0s4ca3E/h4bQp3nNuDZ2cMINQP2nf7dWjGp7NG0bppOFe99guLNqV6O6RKPbk4kcjQYO48r6e3Q/Er58W3IyoihE/W+saAXcdyi7jitVV8k3iYv13Yl/sn9vF6ZwGlTS6/Ss8p4HezV7Is6QhPT+vPnef5V5fAji0jmXfLKPrHNuP2Oet4fdleb4d0ip93ZfDd9nRuG9ud1k3CvR2OX4kIDebCQTEs2ZpGdkGxV2PZfzSX6S+tYNuhbF66cjDXjorzajzqN5rQgd0ZJ5j24gp2p+fy2jVDuWyYf3avbNE4jPdvHM758e14bOE2Hlu4zWfaXB2lhicWJdKxZSNmagKokxlDOlJQXOrVI7CNyVlMf2kFmXlFvH/jcCb0i/ZaLOpUDT6hJ+w7xvSXVpBf5ODDm0ZwTm//7nURERrMi1cOYeaoOF5ftpc/fLiegmKHt8Pio4RktqflcN+EPkSEajtrXQyMbUaPtk28NhTA99vTuWz2KiJCg/nkllEMjdOB1HxNg07oS7akceVrv9AiMoxPbx3FwI7NvR2SSwQHCQ9Pief+ib1ZtCmVa95YzfE87x2m5xQU88+vdzC0cwsu6N/ea3H4u7I+6Wv3Z7I744RH1z13zQFufCeBrm0a8+mto9x+xaOqmwab0N9esY9Z76+lT3QUn9wyks6tfPeCjboQEW4+qxsvXDaI9QcymfHyCg5meedS7Jd+2M2RE0U8NDner85L+KKLT+tAcJAwz0O1dGMM/1q6k3vnbWZ099bMvXmkT3bhVZYGl9BLSw1PfZnIwwu2cm7vdsz5/QhaBfAJuqmDOvD29cNIyy5g2ovL2XYo26PrTz6Wx2vL9nLxaR0C5gjIm9pGRXBWzzZ8uu4gDjefHyl2lHLvvE28YHfhff3aoTTx4S68qoEl9MISB3d+tIFXftzDlcM78fJVgxvEvStHdWvNx7eMRBAufWUly5OOeGzdz361gyCBu8f38tg6A92MIbGkZRewzI37sawL70cJKfzRj7rwNnQNZg9lFxQz8401zN9wiHsm9OLxi/o1qDFEereP4rPbRtGheSNmvrmaz9cfdPs61+7P5IuNh7jpjK7ENNdLwV3l3D5taR4Z6raToxk5hVw2exXLko7w1LT+/NnPuvA2ZA0io6Uez+fSl1eyZt8xnrt0ILee3b1B/oNGN2vER7eMZEjnFvxp7gZe/CEJY9xz2F421nnbpuHcfFY3t6yjoQoPCWbqwBi+2prG8XzXnuzenXGCaS8tJyn9BK9eM4TL/bQLb0MV8Al9R1oO015cQUpmPm9dN4xpg2O9HZJXNWsUytvXD2PKwBieXbKDv87f6pa22AUbD7EhOYv/G9/Lp4dO8FczhnSkqKSULzYeclmZa/dnMuOlFeQVWl14x/Zu57KylWcEdEJfufsoM15egaPUMPfmEYzp0drbIfmE8JBgXvjdIG4+syvvrtrPrPfWurSvekGxg2eX7KBvTBQzGvgPqLv06xBF7/ZNXdbs8tXWNK54dRXNGoUGVBfehiZgE/qCjYe49o3VtIuK4LPbRtM3ppm3Q/IpQUHC/Rf04ZEp8SxNPMwVr67iWG6RS8p+fdleDmbl8+CkeB3fw03K+qRvSM4iKb1+o2y+u3Ifs96zuvDOmzUq4LrwNiQBl9CNMbz60x7+OGc9gzo2Z94t1olAVbGZo7vw4hWD2XIomxkvreDA0bx6lZeeU8CL3ydxfnw7RnZr5aIoVUWmDrL6pH9cx1p6aanh6S+389D8rYzt3Tbgu/A2BAGV0B2lhkcXbuOJxYlM6h/NOzcMo5kHbvvk7yb2j+aDG4dzNLeIaS8tZ1NKVp3Leu7rnRQ5Srn/Ah3r3N3aNA3nnF5t+WzdQUocpbVatqiklD9/tIGXf9zNFcM78fJVQxpEF95AFzAJvaDYwe0frOPN5fu4fnQX/nP5aTpmSC0MjWvJvFmjCA8J5rLZq/h+R3qty9h2KJu5CclcMzKOLj58q7RAMmNILOk5hfxciz7p2QXFXPfWaj7fcIi7x/fiiQbWhTeQBcRezMor4urXf+HLLWk8OKkPf52ibbd10b1tEz67dRRdWjfmxrcTmLvmQI2XNcbw+KJtNGsUyh/H9nBjlMrZ2N5tadk4jE8Satbskna8gEtfXskve47xz0sGcts5DbMLb6Dy+4SekpnHjJdXsjH5OP+94jRuPKOrt0Pya22jIph780hGdWvFvfM286+lO2vUV/3bxHRW7D7Kn87toc1cHhQWEsTUQTEs3XaYrLyqT2rvPJzDtBeXk3wsjzdmns70IdoDKdD4dULfeug4F7+4gvTsAt65YRiTB8R4O6SA0CQ8xPrCD47lhW93cd+8zRRX0UZb7CjlycWJdG3TmCtHdPZgpAqsZpciR9V90lftOcqMl1ZQXGr46JaRnNmzjQcjVJ7itwn9510ZXPrySkKDhE9mjWJEV+1R4UqhwUH845IB/GFsd+YmJPP7dxLILSypcN73Vu1nz5Fc/nJBHx3vwwv6xjSjT3RUpb1dFm46xDWvr6ZN03A+u3WUduENYH757Zu3NoXr3lxDx5aRfHrraL3ZsJuICHed34snLu7HTzszuGz2KjJyCk+aJyuviOe/2cXo7q0Y6+c3B/FnlwyJZVPKcXakndwn/bWf93D7B+sZ2LEZ82aNIrZFpJciVJ7gVwndGMP/vk/iro83MrxrSz66ZSTtm+nYzO525fDOvHrNUJLSrXE+9jjdXOHf3yaRXVDMg5N0rHNvmjoohpAg+fUm0qWlhke/2MbjixKZ2K89794wnOaRYV6OUrlbvRK6iEwQkR0ikiQi97kqqIqUOEp58PMt/P2rHVw0KIY3Zw4jKkJPvnnKuX3aMeemEeQVOpj+0grW7s9kT8YJ3lm5j98N7Uif6Chvh9igtWoSztjebfls/SFyC0u4fc463li+l+tGx/G/KwZrF94GQuo62p6IBAM7gfOAFGANcLkxZltlywwdOtQkJCTUel35RQ7+MGcd3ySmM+vsbtx9fi/tlugl+47kMvPN1aQeL6B72ybsO5LL93efrXex8QFLtx3m9+8k0LFlI5KP5fPgpD7a6ytAiMhaY8zQ6uarTw19GJBkjNljjCkCPgSm1qO8Chlj+P07CXy7PZ1Hp/bl3gm9NZl7UVzrxsybNYre0VFsPZTNred012TuI87u1YbWTcI4fLyQ/1yuXXgbovrU0GcAE4wxN9qvrwaGG2NuLzffTcBNAJ06dRqyf//+Wq/rx50ZFBQ7GN9XbzDsK/KKSvg2MZ3xfdsTFuJXp2IC2uaU4wQHCfEx2gQWSGpaQ6/PQNUVVZNP+XUwxswGZoPV5FKXFZ2lfWZ9TmRYCFMGar9/X9M/VrskNmT1qVqlAB2dXscCrhttXymlVK3UJ6GvAXqISBcRCQMuAxa4JiyllFK1Vec2dAARuQB4HggG3jDGPFHN/BlA7RvRLa0Bz92u3vfp5/Eb/SxOpp/HyQLh8+hsjKm27bleCd2TRCShJicFGgr9PH6jn8XJ9PM4WUP6PLR7glJKBQhN6EopFSD8KaHP9nYAPkY/j9/oZ3Ey/TxO1mA+D79pQ1dKRAzQwxiT5O1YqlJVnCJyJXCtMeZ8z0emAp0/1dBVDYjIPhHJF5ETIpIpIotEpGMF8z0iIkZEhlVT3kwRcdjllT3OdpoeJyLfi0ieiGwXkXFVlPWIiBSXK6tBXZ9ujHm/JslcRN4Skcc9EZMKHJrQA9MUY0wTIBo4DPzHeaJY49xeDRwDrq1BeSuNMU2cHj84TZsDrAdaAX8BPhGRqrpXzS1X1p6ab5Z72APNNRgiUp8rxJUP84uE7slhen2ZiHS0a8OJIrJVRO6oan5jTAHwCRBfbtIZQAxwB3CZfWFYXeLpCQwGHjbG5Btj5gGbgel1Ka+C8u8WkVQROSQi15ebFi4i/xCRAyJyWESOiMhip+n3OC17o3000t2e9paIvCQii0UkFzingvJeFpFGTuVNFpENIpIlIitEZEA14Y8TkV32UdL/7B/RsiOeZfZzEZF/iUi6iBwXkU0i0s8e/+hK4B77KOYLe/4+IvKDHcNWEbnQKb5WIvKFiGSLyDH788gTkZH2dCMit4lEHW6DAAAgAElEQVTILmCX/d4LIpJsL7NWRM5wKu8REflYRN4TkRwR2SwiPUXkfjveZBHx6WYjEbnT/py2iMgcEQn8UeSMMT79wLpoaTfQFQgDNgLx3o7LS59FNDDYft4Ua/ji+HLz7APG2c8jgbeBd8rN8zrwERAKHAWmVbHOmUAu1oUZO4GHgBB72sVAYrn5/wv8p5KyHgGOYx0ZbAVmVbHeCVhHF/2AxsAHWGMFdbenP491ZXJL4H6soSiSnJZNA/ran8G75ZZ9y45jNFalJqJceU2BL4Cn7PkHA+nAcPv/8Vr7cw6vJHYDLASaA52ADKyB7Mo+z2X28/HAWns+AfoA0U4xPu5UZiiQBDxgfw/GAjlAL3v6h/bjPXsfJQPLgeZOMS21t6+R/d5VWEdWIcBd9mcW4bSvCuwYQ4B3gL1YR2GhwO+Bvd7+TlTx/9PBjrdsWz8CZno7Lrdvt7cDqMGOGQl85fT6fuB+b8flCw9gPnBeuff2ASeALKAEa3yd/k7TI4Fs4CL79SvA/CrW0RXoYie+/sC2ss8fq9lmVbn5nwDeqqSseKwjg2BgFJCKNYZ+RfO+ATzt9LqnnZS628kvF+iGNYbQt8DtQJ7Tsk85LdudUxP6O07Tfy2v3P/dXvv5S8Bj5eLbAZxVSewGGOP0+iPgPvv5TH5L6GOxfiRHAEHlyniLkxP6GXbCDXJ6b46deIOBYqwfnr329jxeth6nmMZW8/+UCQy0nz8CLHWaNsX+vwq2Xze1y2zu7e9BJdvSAetHrSXWD9JC4Hxvx+Xuhz80uZTtmDIp9nsNmojEAacBv1Qw+SJjTHMgHCvR/SgiZWMPX4yV6MuaJ94HJlbW7m2s8e73GmNKjTGbgUeBGfbkE0D5cVqjsGqOFZW1zRhzyBjjMMasAF5wKqu8GE7e785DRrTB+mFaC+zBGpv/aayaa0XLOj+v6L1fy7ObM7KAJfb7AJ2Bu8qm2dM72uupTJrT8zygSfkZjDHfYR3R/A84LCKzRaSycW9jgGRjTKnTe/uxvgttsJJWGNbRwJvANUB3EWlcyTYjInfZzXfH7W1qhnWZfJnDTs/zgSPGGIfTayraLl9gjDkI/AM4gFVxOG6M+dq7UbmfPyT0Gg3T25CISBNgHvAnY0x2ZfPZifNTwAGMsd++FutLeEBE0oCPsQ6hL6/h6g2/7ZOtQFcRcb5L90D7/dqWVV4qJ4/m2cnp+RGshPJH4DVjTFNgMlYSLls21mn+U3r5cPL/UFl5fY0xze1HM2OdWAYrET7hNK25MSbSGDOnBttYJWPMv40xQ7Cah3oCd1cQH1hHWh1FxPk72wk4iJXES7CS/mCsI4p3sPa78zmnX8u028vvBS4FWtgVgONUvj/8ioi0wLrhThesz6WxiFzl3ajczx8Sug7T60REQrGS+ft2sq5qXhGRqUALIFFEOgDnYiW/QfZjIPAMlfR2EZGJItLOft4bq312PoAxZiewAXhYRCJE5GJggB1fRWVNFZEWdlzDsBLy/ErC/wiYKSLxIhIJPFw2wa6lvorV/HaRiOyz5x8nIu/Zz6+zTyJGAn+t6nNyKu9fItLWjrWDiIy3Z3kVuEVEhtuxNxaRSeV+yGpNRE63ywzFavIpwErCYNWOnbt0/mLPc4+IhIrVdXQK8KFda/4Uq038IFZivgbr/MjgSlbfFOtHIAMIEZG/curRlj8bh9VklmGMKcb6fEZ5OSa384eErsP02uyeEq9jnYh8ropZvxCRE1ht5U9gXciyFavNe4Mx5mtjTFrZA/g3MEBE+lVQ1rnAJrF6gyzG+mI86TT9MmAoVvvr08AMY0xGJXFdhnViLwerBvmMMebtimY0xnyJdaLyO3uZ78rNci/wGVYSbIlVw04yxlxlL/tv4Ht72ZX2MoWVxFVWXhKwSkSygW+AXnYsCVgnAf9rb2cSVlt4fUVh/VhkYjWfHMVqJgBrP8fbTTyfG+s2jxcCE7GOKF4ErjHGbLfnvx2ria0D1lHXHKwjscru8fsV8CVWG/5+rM+xoqYpf3UAGCEikfb35lwg0csxuZ1fXCkqtRymN1CJyBjgZ6yugWVtqQ8YYxZXvlTDYNdY/88YM7mCaX2ALVi9Uko8HZsnicgg4DWs5pgCrJOcmd6NyjtE5G/A77CORNYDNxpjqvpR93t+kdCVqi27+WcRVpfHt4FSY8xF3o3KfezmsDCsH/vTsY6mbjTGfO7VwJRH+UOTi1J1cTNW+/BurHbpWd4Nx+2aYjWH5WKdQ/gnlZ+fUAFKa+hKKRUgtIaulFIBwqOD9LRu3drExcV5cpVKKeX31q5de8TU4J6iHk3ocXFxJCQkeHKVSinl90Rkf/VzaZOLUkoFDE3oPsBRatieVukV/EopVSOa0H3A0m1pTHj+ZzYmZ3k7FKWUH9OE7gOS0k8A8Nn6g16ORCnlzzSh+4CUTGsk0oWbUilxlFYzt1JKVUwTug9IycwnJEg4cqKQlXuOejscpZSf0oTuA1Iy8xjbuy1Nw0OYv6HBjgyslKonTehe5ig1HMzKp1vbJozv156vtqRRUOyofkGllCpHE7qXpecUUOwwxLZoxNRBMeQUlvDDjnRvh6WU8kOa0L2s7IRobItIRnZtResm4drsopSqE03oXpaSmQdAbItGhAQHMXlANN9uTye7oNjLkSml/I0mdC9LOWbV0Ds0bwTA1EExFJWU8tWWtKoWU0qpU2hC97KUzHzaNA0nIjQYgEEdm9OpZSQLNmqzi1KqdjShe1lKVh4dWzT69bWIMHVQDMuTjpCeU+DFyJRS/kYTupelZOYT2yLypPemDoqh1MCiTaleikop5Y80oXuRo9RwKCufWKcaOkD3tk2Jj47S3i5KqVrRhO5Fh7PL+qBHnjJt6qAYNiRnsf9orhciU0r5I03oXvRbH/RGp0ybMjAGgAVaS1dK1ZAmdC9y7oNeXkzzRgzr0pLPNxzEGOPp0JRSfkgTuheV1dBjmp+a0MFqdtmdkcu2VL2bkVKqeprQvSglM4+2Tn3Qy7ugXzQhQaLNLkqpGtGE7kVWl8WKa+cALRqHcVbPNizYeIjSUm12UUpVTRO6F6Vk5tOx5ak9XJxdOCiG1OMFrNl3zENRKaX8lSZ0L6msD3p558W3o1FosA4FoJSqliZ0L0nLLqCktOI+6M4iw0I4v287Fm1OpahE7zeqlKpctQldRN4QkXQR2eL0XksRWSoiu+y/LdwbZuBJOVZ5l8Xypg6KISuvmGVJGe4OSynlx2pSQ38LmFDuvfuAb40xPYBv7deqFpxvbFGdM3q0oUVkqA4FoJSqUrUJ3RjzE1D+jNxU4G37+dvARS6OK+D91gc9otp5Q4ODmNg/mq+3HiavqMTdoSml/FRd29DbGWNSAey/bSubUURuEpEEEUnIyNAmgzIpmXm0iwonPKTiPujlTR0YQ36xg6XbDrs5MqWUv3L7SVFjzGxjzFBjzNA2bdq4e3V+o6Jhc6tyelxLoptF6EVGSqlK1TWhHxaRaAD7r96mvpbK39iiOkFBwoUDY/hxZwaZuUVujEwp5a/qmtAXANfaz68F5rsmnIahxFFKalZBrWroYF1kVFJqWLxFb3yhlDpVTbotzgFWAr1EJEVEbgCeBs4TkV3AefZrVUOHcwrtPug1r6EDxEdH0b1tE+3topSqUEh1MxhjLq9k0rkujqXBSP61D3rtaugiwtSBMfxz6U4OZeVXOkqjUqph0itFvaCqG1tU58JB1o0v3l2136UxKaX8nyZ0L0jJzEMEomvQB728zq0aM+20Drz+8169PZ1S6iSa0L0gJTOfdk0jatwHvbx7J/YmJFh4bGGiiyNTSvkzTehekJKZV6fmljLtoiL4w9gefJN4mB936sVaSimLJnQvqO7GFjVx/Zg44lpF8rcvtuoojEopQBO6x5U4Skk9XlDtjS2qEx4SzF+nxLMnI5d3Vu5zSWxKKf+mCd3D0rILcNShD3pFxvZuxzm92vD8N7tIzylwQXRKKX+mCd3Dko/VfNjcmnhocjyFJQ7+vmSHS8pTSvkvTegelpJZ8xtb1ETXNk24fkwXPl6bwobkLJeUqZTyT5rQPSwlM9/qg97MdVd5/mFsD9o0DefhBVspLTUuK1cp5V80oXtYSmY+7aMiCAtx3UffJDyE+yb0ZmNyFvPWpbisXKWUf9GE7mH17YNemYtP68BpnZrzzJId5BQUu7x8pZTv04TuYbW9sUVNBQUJj0zpy9HcQv7zXZLLy1dK+T5N6B5U4iglLbvALTV0gIEdm3PpkI68sWwvSekn3LIOpZTv0oTuQanHrT7oHd1QQy9z94ReNAoN5tGF2zBGT5Aq1ZBoQveg+gybW1Otm4Tzp/N68tPODL5N1DsDKtWQaEL3oOTMut3YorauGdmZ7m2b8OjCbRQUO9y6LqWU79CE7kEpmfkECbRvVvtx0GsjNDiIh6fEc+BYHq8v2+vWdSmlfIcmdA9KycxzeR/0ypzRow3j+7bjf98nkXZcx3lRqiHQhO5B7uqyWJkHJ8VTUmr4+1c6zotSDYEmdA866IJx0GujY8tIrhjWifkbDnI4W2vpSgU6TegeUuwoJfW4ZxM6wHWj43AYw7sr9abSSgU6Tegekna8gFLj/h4u5XVu1Zjz+rTj/V/2a48XpQJcvRK6iOwTkc0iskFEElwVVCD6tctiS8/W0AGuH9OFzLxiPlt/0OPrVkp5jitq6OcYYwYZY4a6oKyAVXZRkTuvEq3M8C4tiY+O4o1le/XqUaUCmDa5eEjKsTyP9EGviIhww5gu7Eo/wc+7jnh8/Uopz6hvQjfA1yKyVkRuqmgGEblJRBJEJCEjI6Oeq/NfKZn5RDdrRGiwd35DJw+MpnWTcN5YrhcaKRWo6ptdRhtjBgMTgdtE5MzyMxhjZhtjhhpjhrZp06aeq/NfKZn5dPBwDxdn4SHBXDOyMz/syCApPcdrcSil3KdeCd0Yc8j+mw58BgxzRVCByF03tqiNK4Z3IiwkiDeX7/NqHEop96hzQheRxiLStOw5cD6wxVWBBZKikrJx0D1/QtRZ6ybhXDyoA/PWpZCZW+TVWJRSrlefGno7YJmIbARWA4uMMUtcE1Zg+a0Pundr6ADXjYmjoLiUOWsOeDsUpZSLhdR1QWPMHmCgC2MJWCl2H3RvdFksr3f7KEZ3b8U7K/bz+zO6euwkbWGJg7DgIETEpeUaYygoLqVRWLBLy1XKH2m3RQ/wxI0tauOGMV1Iyy5g8eZUj6xve1o2I578lmfdMEjYqz/v4fQnvtGxapRCE7pHJGfmERwkRHuhD3pFzu7Zlq6tG3vkQqO04wVc9+YaMvOKmf3THnYddl0Pm9Tj+fxr6S5OFJboWDVKoQndI1Iy82kfFUGIl/qglxcUJFw3Oo6NKcdZdyDTbevJKShm5purySko4f0bh9M4LJi/feG6e50+tXg7pcYwuFNzHatGKTShe4QvdFksb9rgWKIiQnhj2T63lF/sKOXW99eRlH6CF68czOjurbnr/F4sSzrC19sO17v8NfuOsWDjIW4+syt3j+9NZl4xn+tYNaqB04TuAZ6+sUVNNA4P4fLhnfhyS+qvJ21dxRjDffM28/OuIzw1rT9n9rQuKLtyeCd6tWvKY/W816mj1PDw/K3ENItg1tndGdG1JX2io3hjuY5Voxo2Tehu9lsfdN+qoQNcOzIOEeEdF7c/P//NLuatS+FP43pwydCOv74fYt/rNCUzn1d/2lPn8j9cc4Btqdk8MKkPjcKCfx2rZufhEyxL0rFqVMOlCd3NUo/nY3ykD3p5Mc0bMbFfe+asPkBuYYlLyvxoTTIvfLuLS4fGcse5PU6ZPqp7ay7o357//ZDEoaz8WpeflVfEP77awfAuLZnUP/rX96fYY9XoTbFVQ6YJ3c1+67LoW00uZa4f04WcghI+WZtS77J+3JnB/Z9t5syebXji4v6V9jl/4II+GANPLk6s9Tr+tXQnx/OLeeTCvieVHx4SzNUjysaqOVHnbVDKn2lCd7NfLyrywo0tamJwpxYM6ticN5fvpbS07u3PWw4e59b31tKrXVNevHJwlRcsxbaIZNbZ3Vi4KZVVe47WeB3b07J5d9V+rhrRmT7RUadMv3JE2Vg1WktXDZMmdDdLycwnOEhoH+UbfdArcsOYLuw7msf3O9LrtPzBrHyuf2sNzRqF8uZ1p9MkvPoLkG85qxsdmjfikQVbKXGUVju/MYZHFmwlqlEofz6vZ4XztG4SzkWDYpi3LoWsPB2rRjU8mtDdLPlYHtHNfKcPekUm9GtPdLOIOrU/H88vZuYbq8kvdvDW9cNoV8MfrojQYB6c1IftaTnMWV39uDKLN6exas8x7jq/F80jwyqd77rRXayxalYn13gblAoUvptlAoTVZdE3m1vKhAYHce2oOFbsPkpianaNlysscXDzuwnsO5rLK1cPoWe7prVa74R+7RnZtRX/XLqzytEf84scPLk4kT7RUVwxrFOVZfaJjmJUt1a8vWIfxTWo+SsVSOo8OJeqmZTMfMb0aO3tMKp1+emdeOGbXTz/zU6uGN65Rst8nJDMqj3HeOGyQYzqVvttFBEevjCeSf9exnNLd/LYRf0qnO/lH3dzMCuf5y4dSHBQ9YN73TCmCze8ncCXW9K4cGBMreNSyl9pQnejwhIHh3N8sw96ec0iQ7l0aCxvr9zPV1trfiXnPRN6MXVQhzqvt3f7KK4e0Zl3Vu7j8mGdiI85+WRn8rE8Xv5xN1MGxjC8a6salXlOr7Z0ad2Y15ftZcqAaJeP8KiUr9KE7kapWQV2H3Tf7LJY3gOT+nDRaR2oaWeXphEhtW5mqcid43oyf8NBHvliK3NvGnFSAn5ycSJBItw/sXeNyysbq+av87ey7kAWQzq3qHeMSvkDTehu5GvD5lYnPCSY0zp5Pvk1iwzl7vG9eeCzzSzclMoUu5lkedIRvtySxv+d35OY5rX7DKcPjuUfX+3gjeV7NaGrBkNPirpRWR90f0no3vS70zvSNyaKJxcnkldUQrGjlL99sZWOLRtx4xlda11e4/AQLh/WiSVb0jhYhytSlfJHmtDdKCUznxAf74PuK4KDhEcu7Evq8QJe+mE3763az87DJ3hwUjwRoXW7G9E1o+IAeGfFPtcFqpQP04TuRsmZeUQ39+0+6L7k9LiWTB0Uwys/7eG5pTs5o0drzo9vV+fyOjRvxIS+7fnAhWPVKFUXRSWe6UKrbeg1tDE5i/98t4s2TSO487wetG1afa07JTOf2Ob+cULUV9w/sQ9Ltx0mv8jBw1Pi691D5foxXVi0OZV561K4ZmRcjZery/52NWMM3ySm8+byvQzt3IKbz+pG4xpchVsTWXlF/Oe7JHaln2DWWd0Y2a1mPYhcLflYHs8t3UlhiYM7x/WkhwtOsgOUlhoWbDzE7J/2kFtU8x/zkV1b8efze7psfxeWOHhz+T7eXL6XL24fQ1s3H61rQq9G2vECnl2ynU/XH6RFZCgnCktYsOEgt57TnRvGdKmyOSAlM48ze7TxYLT+r32zCP53xWByCkvo3rb+X+7BnZozsGNz3ly+j6uGdyaomn7s9dnfrpSYms3ji7axPOkobZuGs2L3UeYmJHP3+N5MO61DtdtRmWJHKe+v2s/z3+4iO7+Ylo3DufzVVYzv244HLuhD51aNXbwlFcspKOZ/3+/mjWV7CQ4SQoKFr7Ye5qrhnfjTuJ60aFz51cDVWbs/k8cWbmNDchZ9oqM4rWPzGi1XUFzKvHUpfLHxUL33tzGGJVvSeOrL7Rw4lse5vdtSXI+xkmpKPHlDgKFDh5qEhASPra8+8osczP5pDy//uBtHqeGGM7pw69ndOHKiiKcWJ/L1tsN0aN6IBy7owwX9259SkywscdDrwSXcOa4nd4w7dRhZ5TkLNh7ij3PW8/q1Qzm3T8VNODXZ37EtGnH/xIr3t6scOVHIP7/eydw1B4hqFMqd43pyxfBObErJ4tGFiWxMzmJAbDMemhzP6XEta1X29zvSeXzhNnZn5DK6eysenBRPl9aNee3nPbz4w25KHIbrRsdx29juREWEumX7HKWGjxOS+cfXOzhyoohpgztwz/jehAYLz3+zi/d/2U+T8BDuGNeTq0d0Jiyk5s2VB7PyeebL7SzYeIi2TcO5Z0Ltf/z2Hsmt9/7ecvA4jy7cxuq9x+jVrikPTu7DGfWs2InIWmPM0Grn04R+srJDtWeWbCf1eAEX9G/P/RP70LHlyU0nK5KO8OjCbWxPy+H0uBY8NDmeAbG/1QT2HsnlnH/8wD8vGcj0IbGe3gzlpNhRypnPfk/XNo15/8YRJ01z1f6ur8ISB28t38d/v0siv9jB1SM7c8e5PU4at6a01DB/40Ge+XIHadkFTBoQzX0Tep8Sa3m7Dufw+KJEftyZQVyrSP4yKZ5xfdqelKTSswv4+1c7+GRdCi0jw/jz+T257PRONboyt6ZW7D7CYwsTSUzNZkjnFvx1cjwDy9Wed6Tl8Piibfy86whdWzfmL5P6MLZ32yoTam5hCa/8uJtX7Jum3HRmV26pZ/NUXfZ3enYB//h6Bx+vTaFFZBh/Pq8nl53e0SXn0DyS0EVkAvACEAy8Zox5uqr5fT2hrzuQyaNfWIdq/TpE8dCk+CqvTnSUGj5KSOafdm1j+uBY7pnQi3ZREfy8K4OrX1/N3JtG1PgKR+U+L/2wm2eWbOfLO874dehd50Pz+u7vujLG8NXWNJ5c/Nuh+QOT+tCtTZNKl8krKuGVH/fwyk+7KTVw45gu3HpO91NGuTyWW8Tz3+zk/V8OEBkWzB3n9uCakXFV1no3pxznsYXbWL3vGL3bN+WhyfGM7l6/oSv2HcnlSaej2vsm9mZyFVfwGmOso4lFiezJyGVM99Y8OLkPvduffBVxaanh0/UHeXbJdtJzCrlwYAz3TuxNh1pes1CZmu7vgmIHry/by4vfJ1HkKGXmqDhuH9uDZo1cd5Tj9oQuIsHATuA8IAVYA1xujNlW2TK+mtAPZeXzzJLtzN9gHardPb4X0wfH1vhQrXx74Kyzu9EkPIRHF25j+X1jXfYPpuouK6+IkU99x5SB0dwxrudJh+b13d+3nt2N35/ZtdbtrVsOWsnzl73H6NmuCQ9Oiv/1/qs1kXo8n2eX7OCz9Qdp3SSce8b3YvqQWBylhndX7eeFb3aSW+TgimGduPO8nrSsYbt0WfvvE4sTScnMZ1yfdvxlUh+6tK5d+3p2QTH//S6JN5fvJTQ4iNtq2S5d7CjlvVX7ef6bXeQUFHP5sE78+byetGoSzpp9x3j0i21sPnicgR2b89fJfRjSuXZNUDVV2f4ODwli0eZUnlq8nYNZ+Zwfb52HiKvl51QTnkjoI4FHjDHj7df3Axhjnqpsmbom9K+2ppF8zLU3Mi6TdryA937ZjzH1P1Q7cDSPp75M5MstaYhAsAg7Hp/o0sNWVXcPfr6ZuWuSCbJrhq7c3zHNIrhyRGfCa9jmuz0th3nrXHNovv5AJo8u3Mb6A1nER0dRUOxgz5FczujRmocmx9d5eIaCYquHxv++T6Kg2MHlwzrRuVXNem2dKCzh3ZX7OZZXxCVDYvm/83vVuYdHVl4Rz3+zi3dX7ScyNJjTOrfgp50ZtI+K4L6JvblwYEydTxLXRvn93b5ZBOsOWCdeH5rcp04D1NWUJxL6DGCCMeZG+/XVwHBjzO3l5rsJuAmgU6dOQ/bvr/0Nia97czXf78ioU5w1MWVgDPdO6OWyMVdW7TnKE4sSiQwLZu7NI11Spqq/PRknmPrf5Zzdu63L9/fji7ax5WDNhx4ODRaXHpobY/hiUyp//2o7ESHBPHBBH87u1cYlJ2/Tcwp47uudfJSQXONxfgCGdWnJXyfH069Ds3rHAJCUnsMTixJZuz+T68d04aYzuxIZ5vmOemXf74ycwl9vhO7uSpsnEvolwPhyCX2YMeYPlS1T1xp6XlEJJW7q8hMSJF75p1DeYYxxSw8VYww5tbh4KSw4yGNdIF0lv8hBcWnNLpARoKmbeso0RDVN6PXJZClAR6fXscChepRXKU24ylXc1d1QRNzW1c9XNAoLphH+9SPU0NSnP80aoIeIdBGRMOAyYIFrwlJKKVVbda76GmNKROR24CusbotvGGO2uiwypZRSteLRC4tEJAOo/VlRS2vgiAvD8TWBvn0Q+Nuo2+f/fHUbOxtjqu3T6tGEXh8iklCTkwL+KtC3DwJ/G3X7/J+/b6OO66qUUgFCE7pSSgUIf0ros70dgJsF+vZB4G+jbp//8+tt9Js2dKWUUlXzpxq6UkqpKmhCV0qpAOEXCV1EJojIDhFJEpH7vB2Pq4nIPhHZLCIbRMT3xheuAxF5Q0TSRWSL03stRWSpiOyy/7bwZoz1Ucn2PSIiB+39uEFELvBmjPUhIh1F5HsRSRSRrSJyh/1+QOzDKrbPr/ehz7eh12XcdX8jIvuAocYYX7ygoU5E5EzgBPCOMaaf/d6zwDFjzNP2D3MLY8y93oyzrirZvkeAE8aYf3gzNlcQkWgg2hizTkSaAmuBi4CZBMA+rGL7LsWP96E/1NCHAUnGmD3GmCLgQ2Cql2NS1TDG/AQcK/f2VOBt+/nbWF8gv1TJ9gUMY0yqMWad/TwHSAQ6ECD7sIrt82v+kNA7AMlOr1MIgA++HAN8LSJr7fHjA1U7Y0wqWF8ooK2X43GH20Vkk90k45fNEeWJSBxwGvALAbgPy20f+PE+9IeEXtF4p77dTlR7o40xg4GJwG324bzyPy8B3YBBQCrwT++GU38i0gSYB/zJGFPzO3j4iQq2z6/3oT8kdI+Nu+4txphD9t904DOsZqZAdNhuuyxrw0z3cjwuZYw5bIxxGGNKgVfx8/0oIqFYye59Y8yn9tsBsw8r2j5/34f+kNADetx1EWlsn5RBRBoD5wNbql7Kby0ArrWfXwvM92IsLleW6GwX48f7UTm9Xc0AAACzSURBVKw7gbwOJBpjnnOaFBD7sLLt8/d96PO9XADsrkPP89u46094OSSXEZGuWLVysMan/yAQtk9E5gBnYw1Hehh4GPgc+AjoBBwALjHG+OWJxUq272ysQ3UD7ANuLmtv9jciMgb4GdgMlN137gGsdma/34dVbN/l+PE+9IuErpRSqnr+0OSilFKqBjShK6VUgNCErpRSAUITulJKBQhN6EopFSA0oSulVIDQhK6UUgHi/wECyNgdfT2HXAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d77a24db70>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADUJJREFUeJzt3W2MZQddx/Hvj65VebJP01L74Na4UZEoxUkDEsFQSFoxbV8UhaAsZJN9AQpaH6gPCYm8aX0qGg1xQ8HFEGipmDZQH+pSNCZ245Q2QLvirhXbpWt3CLSKRLHh74s5NZNldufOPffOdP79fpLNvefcc+/5n93sd27P3nuaqkKS1NeztnoASdJ8GXpJas7QS1Jzhl6SmjP0ktScoZek5gy9JDVn6CWpOUMvSc3t2OoBAM4555zauXPnVo8hSdvKvffe+6WqWlhvu6dF6Hfu3MnS0tJWjyFJ20qSf5tkO0/dSFJzhl6SmjP0ktScoZek5gy9JDW3buiTvD/J8SSfW7XurCR3JTk83J45rE+SP0hyJMlnkrxknsNLktY3yTv6PwGuOGHd9cCBqtoFHBiWAa4Edg2/9gLvnc2YkqRprRv6qvo74MsnrL4a2D/c3w9cs2r9B2vFPcAZSc6f1bCSpI2b9hz9eVV1DGC4PXdYfwHwyKrtjg7rJElbZNbfjM0a69b8v48n2cvK6R0uvvjiGY8hzcbO6z+xZfv+wg2v3bJ9q5dp39E/9tQpmeH2+LD+KHDRqu0uBB5d6wWqal9VLVbV4sLCupdqkCRNadrQ3wHsHu7vBm5ftf5Nw6dvXgo88dQpHknS1lj31E2SDwM/BpyT5CjwLuAG4NYke4CHgdcNm98J/DhwBPga8JY5zCxJ2oB1Q19VbzjJQ5evsW0Bbxs7lCRpdvxmrCQ1Z+glqTlDL0nNGXpJas7QS1Jzhl6SmjP0ktScoZek5gy9JDVn6CWpOUMvSc0ZeklqztBLUnOGXpKaM/SS1Jyhl6TmDL0kNWfoJak5Qy9JzRl6SWrO0EtSc4Zekpoz9JLUnKGXpOYMvSQ1Z+glqTlDL0nNGXpJas7QS1Jzhl6SmjP0ktScoZek5kaFPskvJHkgyeeSfDjJtyW5JMnBJIeT3JLk9FkNK0nauKlDn+QC4O3AYlW9CDgNeD1wI3BTVe0CvgLsmcWgkqTpjD11swP49iQ7gGcDx4BXAbcNj+8Hrhm5D0nSCFOHvqq+CPwO8DArgX8CuBd4vKqeHDY7ClwwdkhJ0vTGnLo5E7gauAT4TuA5wJVrbFonef7eJEtJlpaXl6cdQ5K0jjGnbl4N/GtVLVfV/wIfA34EOGM4lQNwIfDoWk+uqn1VtVhViwsLCyPGkCSdypjQPwy8NMmzkwS4HHgQuBu4dthmN3D7uBElSWOMOUd/kJV/dP008NnhtfYB7wSuS3IEOBu4eQZzSpKmtGP9TU6uqt4FvOuE1Q8Bl415XUnS7PjNWElqztBLUnOGXpKaM/SS1Jyhl6TmDL0kNWfoJak5Qy9JzRl6SWrO0EtSc4Zekpoz9JLUnKGXpOYMvSQ1Z+glqTlDL0nNGXpJas7QS1Jzhl6SmjP0ktScoZek5gy9JDVn6CWpOUMvSc0ZeklqztBLUnOGXpKaM/SS1Jyhl6TmDL0kNWfoJak5Qy9JzRl6SWpuVOiTnJHktiT/lORQkpclOSvJXUkOD7dnzmpYSdLGjX1H//vAX1bV9wE/BBwCrgcOVNUu4MCwLEnaIlOHPsnzgVcANwNU1der6nHgamD/sNl+4JqxQ0qSpjfmHf13A8vAB5Lcl+R9SZ4DnFdVxwCG23NnMKckaUpjQr8DeAnw3qq6FPgvNnCaJsneJEtJlpaXl0eMIUk6lTGhPwocraqDw/JtrIT/sSTnAwy3x9d6clXtq6rFqlpcWFgYMYYk6VSmDn1V/TvwSJLvHVZdDjwI3AHsHtbtBm4fNaEkaZQdI5//c8CHkpwOPAS8hZUfHrcm2QM8DLxu5D4kSSOMCn1V3Q8srvHQ5WNeV5I0O34zVpKaM/SS1Jyhl6TmDL0kNWfoJak5Qy9JzRl6SWrO0EtSc4Zekpoz9JLUnKGXpOYMvSQ1Z+glqTlDL0nNGXpJas7QS1Jzhl6SmjP0ktScoZek5gy9JDVn6CWpOUMvSc0ZeklqztBLUnOGXpKaM/SS1Jyhl6TmDL0kNWfoJak5Qy9JzRl6SWrO0EtSc6NDn+S0JPcl+fiwfEmSg0kOJ7klyenjx5QkTWsW7+jfARxatXwjcFNV7QK+AuyZwT4kSVMaFfokFwKvBd43LAd4FXDbsMl+4Jox+5AkjTP2Hf17gF8BvjEsnw08XlVPDstHgQtG7kOSNMLUoU/yE8Dxqrp39eo1Nq2TPH9vkqUkS8vLy9OOIUlax5h39C8HrkryBeAjrJyyeQ9wRpIdwzYXAo+u9eSq2ldVi1W1uLCwMGIMSdKpTB36qvrVqrqwqnYCrwc+WVVvBO4Grh022w3cPnpKSdLU5vE5+ncC1yU5wso5+5vnsA9J0oR2rL/J+qrqU8CnhvsPAZfN4nUlSeP5zVhJas7QS1Jzhl6SmjP0ktScoZek5gy9JDVn6CWpOUMvSc0ZeklqztBLUnOGXpKaM/SS1Jyhl6TmDL0kNWfoJak5Qy9JzRl6SWrO0EtSc4Zekpoz9JLUnKGXpOYMvSQ1Z+glqTlDL0nNGXpJas7QS1Jzhl6SmjP0ktScoZek5gy9JDVn6CWpOUMvSc0ZeklqburQJ7koyd1JDiV5IMk7hvVnJbkryeHh9szZjStJ2qgx7+ifBH6xqr4feCnwtiQvBK4HDlTVLuDAsCxJ2iJTh76qjlXVp4f7/wkcAi4Argb2D5vtB64ZO6QkaXozOUefZCdwKXAQOK+qjsHKDwPg3JM8Z2+SpSRLy8vLsxhDkrSG0aFP8lzgz4Cfr6r/mPR5VbWvqharanFhYWHsGJKkkxgV+iTfwkrkP1RVHxtWP5bk/OHx84Hj40aUJI0x5lM3AW4GDlXV76166A5g93B/N3D79ONJksbaMeK5Lwd+BvhskvuHdb8G3ADcmmQP8DDwunEjSpLGmDr0VfX3QE7y8OXTvq4kabb8ZqwkNWfoJak5Qy9JzRl6SWrO0EtSc4Zekpoz9JLUnKGXpOYMvSQ1Z+glqTlDL0nNGXpJas7QS1Jzhl6SmjP0ktScoZek5gy9JDVn6CWpOUMvSc0ZeklqztBLUnOGXpKaM/SS1Jyhl6TmDL0kNWfoJak5Qy9JzRl6SWrO0EtSc4Zekpoz9JLUnKGXpObmEvokVyT5fJIjSa6fxz4kSZOZeeiTnAb8EXAl8ELgDUleOOv9SJImM4939JcBR6rqoar6OvAR4Oo57EeSNIF5hP4C4JFVy0eHdZKkLbBjDq+ZNdbVN22U7AX2DotfTfL5Ocwyb+cAX9rqITbZM+2Yt+x4c+NW7BV45v0Zw/Y95u+aZKN5hP4ocNGq5QuBR0/cqKr2AfvmsP9Nk2Spqha3eo7N9Ew75mfa8YLH3NE8Tt38I7ArySVJTgdeD9wxh/1IkiYw83f0VfVkkp8F/go4DXh/VT0w6/1IkiYzj1M3VNWdwJ3zeO2nmW196mlKz7RjfqYdL3jM7aTqm/6dVJLUiJdAkKTmDP0GJDkryV1JDg+3Z55i2+cn+WKSP9zMGWdtkmNO8uIk/5DkgSSfSfJTWzHrGOtdtiPJtya5ZXj8YJKdmz/lbE1wzNcleXD4Mz2QZKKP8j2dTXp5liTXJqkkLT6JY+g35nrgQFXtAg4MyyfzbuBvN2Wq+ZrkmL8GvKmqfgC4AnhPkjM2ccZRJrxsxx7gK1X1PcBNwNZ9yn0GJjzm+4DFqvpB4DbgtzZ3ytma9PIsSZ4HvB04uLkTzo+h35irgf3D/f3ANWttlOSHgfOAv96kueZp3WOuqn+uqsPD/UeB48DCpk043iSX7Vj9+3AbcHmStb4cuF2se8xVdXdVfW1YvIeV78RsZ5NenuXdrPxQ++/NHG6eDP3GnFdVxwCG23NP3CDJs4DfBX55k2ebl3WPebUklwGnA/+yCbPNyiSX7fj/barqSeAJ4OxNmW4+Nnqpkj3AX8x1ovlb95iTXApcVFUf38zB5m0uH6/czpL8DfCCNR769Qlf4q3AnVX1yHZ5wzeDY37qdc4H/hTYXVXfmMVsm2SSy3ZMdGmPbWTi40ny08Ai8Mq5TjR/pzzm4U3aTcCbN2ugzWLoT1BVrz7ZY0keS3J+VR0bonZ8jc1eBvxokrcCzwVOT/LVqnraXpd/BsdMkucDnwB+o6rumdOo8zLJZTue2uZokh3AdwBf3pzx5mKiS5UkeTUrP/BfWVX/s0mzzct6x/w84EXAp4Y3aS8A7khyVVUtbdqUc+Cpm425A9g93N8N3H7iBlX1xqq6uKp2Ar8EfPDpHPkJrHvMw6Uu/pyVY/3oJs42K5NctmP178O1wCdre38JZd1jHk5j/DFwVVWt+QN+mznlMVfVE1V1TlXtHP7+3sPKsW/ryIOh36gbgNckOQy8ZlgmyWKS923pZPMzyTH/JPAK4M1J7h9+vXhrxt244Zz7U5ftOATcWlUPJPnNJFcNm90MnJ3kCHAdp/7E1dPehMf826z8V+lHhz/TbX3NqgmPuSW/GStJzfmOXpKaM/SS1Jyhl6TmDL0kNWfoJak5Qy9JzRl6SWrO0EtSc/8HdVo60cusO/8AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d77b6de240>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAD5lJREFUeJzt3X2MZXV9x/H3RxafKi3ojnYDbNcabKGkLHYkVBtFULNAIpjQRlotNKRrrRptjZHapNqnBNsqTRMfsgpl2/hEUSsR1BKEUqtgB13Xha0F6dauEnaooqIp7S7f/nEPdlxn9p47c+/M3Z/vVzKZc8/93fl9cufy4cx52lQVkqTD36PWOoAkaTwsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1Ij1q3mZOvXr69Nmzat5pSSdNi7/fbb76+qmWHjhhZ6kscCtwCP6cZfU1VvSnIV8FzgW93Qi6tqx6F+1qZNm5ibmxs2pSRpgST/0Wdcny30h4Azq+rBJEcCn07y8e6511fVNcsNKUkan6GFXoO7dz3YPTyy+/KOXpI0ZXodFE1yRJIdwD7ghqq6rXvqT5PsTHJ5ksdMLKUkaahehV5VB6pqM3AccFqSk4HfA34WeCbwROANi702ydYkc0nm5ufnxxRbknSwkU5brKoHgJuBLVV1bw08BPw1cNoSr9lWVbNVNTszM/QgrSRpmYYWepKZJEd3y48Dng/8a5IN3boA5wO7JhlUknRofc5y2QBsT3IEg/8BXF1VH0vyqSQzQIAdwG9NMKckaYg+Z7nsBE5dZP2ZE0kkSVoWL/2XpEas6qX/K7Hp0uvWbO49l527ZnNLUl9uoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNGFroSR6b5HNJvpjkjiR/2K1/apLbktyV5INJHj35uJKkpfTZQn8IOLOqTgE2A1uSnA68Bbi8qk4AvglcMrmYkqRhhhZ6DTzYPTyy+yrgTOCabv124PyJJJQk9dJrH3qSI5LsAPYBNwBfAR6oqv3dkL3AsZOJKEnqo1ehV9WBqtoMHAecBpy42LDFXptka5K5JHPz8/PLTypJOqSRznKpqgeAm4HTgaOTrOueOg74+hKv2VZVs1U1OzMzs5KskqRD6HOWy0ySo7vlxwHPB3YDNwEXdMMuAj46qZCSpOHWDR/CBmB7kiMY/A/g6qr6WJI7gQ8k+RPgC8AVE8wpSRpiaKFX1U7g1EXW38Ngf7okaQp4pagkNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWrE0EJPcnySm5LsTnJHktd069+c5GtJdnRf50w+riRpKet6jNkPvK6qPp/kKOD2JDd0z11eVX8xuXiSpL6GFnpV3Qvc2y1/J8lu4NhJB5MkjWakfehJNgGnArd1q16VZGeSK5McM+ZskqQR9C70JE8APgS8tqq+DbwTeBqwmcEW/FuXeN3WJHNJ5ubn58cQWZK0mF6FnuRIBmX+3qr6MEBV3VdVB6rqYeDdwGmLvbaqtlXVbFXNzszMjCu3JOkgfc5yCXAFsLuq3rZg/YYFw14M7Bp/PElSX33Ocnk28DLgS0l2dOveCFyYZDNQwB7g5RNJKEnqpc9ZLp8GsshT148/jiRpubxSVJIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRQws9yfFJbkqyO8kdSV7TrX9ikhuS3NV9P2bycSVJS+mzhb4feF1VnQicDrwyyUnApcCNVXUCcGP3WJK0RoYWelXdW1Wf75a/A+wGjgXOA7Z3w7YD508qpCRpuJH2oSfZBJwK3AY8paruhUHpA08edzhJUn/r+g5M8gTgQ8Brq+rbSfq+biuwFWDjxo3LySg1bdOl163JvHsuO3dN5tXk9NpCT3IkgzJ/b1V9uFt9X5IN3fMbgH2LvbaqtlXVbFXNzszMjCOzJGkRfc5yCXAFsLuq3rbgqWuBi7rli4CPjj+eJKmvPrtcng28DPhSkh3dujcClwFXJ7kE+Crwy5OJKEnqY2ihV9WngaV2mJ813jiSpOXySlFJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktSIoYWe5Mok+5LsWrDuzUm+lmRH93XOZGNKkobps4V+FbBlkfWXV9Xm7uv68caSJI1qaKFX1S3AN1YhiyRpBVayD/1VSXZ2u2SOWWpQkq1J5pLMzc/Pr2A6SdKhLLfQ3wk8DdgM3Au8damBVbWtqmaranZmZmaZ00mShllWoVfVfVV1oKoeBt4NnDbeWJKkUS2r0JNsWPDwxcCupcZKklbHumEDkrwfOANYn2Qv8CbgjCSbgQL2AC+fYEZJUg9DC72qLlxk9RUTyCJJWgGvFJWkRgzdQtePnk2XXrdmc++57Nw1m1s63LmFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDViaKEnuTLJviS7Fqx7YpIbktzVfT9msjElScP02UK/Cthy0LpLgRur6gTgxu6xJGkNDS30qroF+MZBq88DtnfL24Hzx5xLkjSi5e5Df0pV3QvQfX/y+CJJkpZj3aQnSLIV2AqwcePGSU+nw9ymS69bk3n3XHbumswrjdNyt9DvS7IBoPu+b6mBVbWtqmaranZmZmaZ00mShlluoV8LXNQtXwR8dDxxJEnL1ee0xfcDnwV+JsneJJcAlwEvSHIX8ILusSRpDQ3dh15VFy7x1FljziJJWgGvFJWkRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqRETv5eLlm+t7msi6fDkFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQI7+Ui4X1z1Aa30CWpERa6JDViRbtckuwBvgMcAPZX1ew4QkmSRjeOfejPq6r7x/BzJEkr4C4XSWrESgu9gH9IcnuSrYsNSLI1yVySufn5+RVOJ0laykoL/dlV9QzgbOCVSZ5z8ICq2lZVs1U1OzMzs8LpJElLWVGhV9XXu+/7gI8Ap40jlCRpdMsu9CQ/luSoR5aBFwK7xhVMkjSalZzl8hTgI0ke+Tnvq6pPjCWVJGlkyy70qroHOGWMWSRJK+C9XKQfUWt5/5o9l527ZnO3zPPQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiM8bbEH/3kySYcDt9AlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGeC8XST8yWv9n99xCl6RGrKjQk2xJ8uUkdye5dFyhJEmjW3ahJzkCeDtwNnAScGGSk8YVTJI0mpVsoZ8G3F1V91TV/wAfAM4bTyxJ0qhWUujHAv+54PHebp0kaQ2s5CyXLLKufmhQshXY2j18MMmXlznfeuD+Zb52ksw1GnONpslcecsYk/ygaX2/yFtWlO2n+gxaSaHvBY5f8Pg44OsHD6qqbcC2FcwDQJK5qppd6c8ZN3ONxlyjMddopjUXrE62lexy+RfghCRPTfJo4CXAteOJJUka1bK30Ktqf5JXAZ8EjgCurKo7xpZMkjSSFV0pWlXXA9ePKcswK95tMyHmGo25RmOu0UxrLliFbKn6oeOYkqTDkJf+S1Ijpq7Qh91OIMljknywe/62JJumJNfvJrkzyc4kNybpdZrRpHMtGHdBkkqyKmcA9MmV5Fe69+yOJO+bhlxJNia5KckXut/lOauU68ok+5LsWuL5JPmrLvfOJM+Ykly/1uXZmeQzSU6ZhlwLxj0zyYEkF0xLriRnJNnRfe7/cawBqmpqvhgcXP0K8NPAo4EvAicdNOa3gXd1yy8BPjgluZ4HPL5bfsW05OrGHQXcAtwKzE5DLuAE4AvAMd3jJ09Jrm3AK7rlk4A9k87VzfUc4BnAriWePwf4OIPrP04HbpuSXM9a8Ds8e1pyLfh9f4rBcb4LpiEXcDRwJ7CxezzWz/20baH3uZ3AecD2bvka4Kwki13ktKq5quqmqvpe9/BWBuflT1rf2y/8MfBnwH+vQqa+uX4TeHtVfROgqvZNSa4Cfrxb/gkWubZiEqrqFuAbhxhyHvA3NXArcHSSDWudq6o+88jvkNX73Pd5vwBeDXwIWI3PFtAr168CH66qr3bjx5pt2gq9z+0Evj+mqvYD3wKeNAW5FrqEwdbUpA3NleRU4Piq+tgq5OmdC3g68PQk/5zk1iRbpiTXm4GXJtnLYMvu1auQq4/D4VYbq/W5HyrJscCLgXetdZaDPB04JsnNSW5P8uvj/OHT9g9c9LmdQK9bDoxZ7zmTvBSYBZ470UTddIus+36uJI8CLgcuXoUsC/V5v9Yx2O1yBoOtun9KcnJVPbDGuS4Erqqqtyb5ReBvu1wPTzBXH2vxue8tyfMYFPovrXWWzl8Cb6iqA5P/A34k64BfAM4CHgd8NsmtVfVv4/rh06TP7QQeGbM3yToGfxYP+9NrNXKR5PnA7wPPraqHJpypT66jgJOBm7sP9U8C1yZ5UVXNrWGuR8bcWlX/C/x7d4+fExhcgbyWuS4BtgBU1WeTPJbB/UFW7c/2JfT6DK6FJD8PvAc4u6r+a63zdGaBD3Sf+/XAOUn2V9Xfr20s9gL3V9V3ge8muQU4BRhLoU/8IMGIBxTWAfcAT+X/D1r93EFjXskPHhS9ekpyncrggNsJ0/R+HTT+ZlbnoGif92sLsL1bXs9gd8KTpiDXx4GLu+UTGZRmVun3uYmlD6adyw8eFP3cKn7ODpVrI3A38KzVytMn10HjrmKVDor2eL9OBG7sPouPB3YBJ49r7qnaQq8lbieQ5I+Auaq6FriCwZ/BdzPYMn/JlOT6c+AJwN91WwVfraoXTUGuVdcz1yeBFya5EzgAvL4mvHXXM9frgHcn+R0GuzQuru6/xElK8n4Gu5/Wd/vv3wQc2eV+F4P9+ecwKM/vAb8x6Uw9c/0Bg2NY7+g+9/trFW6O1SPXmhiWq6p2J/kEsBN4GHhPVR3y1MuR5l+Fz6okaRVM21kukqRlstAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWrE/wHk8F7MQ0RJRQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d77b7642e8>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADj5JREFUeJzt3X+MZeVdx/H3R3ZLG9sIuFPc8KNTG6JFYxccNxiSirQ1FJJCY03gjwoGs1VLpEljXPuHrUYTmtiS+COt24BdTUvb0FYQqIqUhjTR1QEXurhWKFmVsmGHIr+iwSz9+sec1nWZ2Xvur7lzH9+v5Oae+5znzPk+OfDZZ84950yqCknS/PueWRcgSZoMA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUiC0bubNt27bV4uLiRu5Skube/fff/1RVLQzqNzDQk7wSuA84uet/a1V9MMkngZ8Cnu26XlNV+0/0sxYXF1leXh60S0nSMZL8a59+fWboLwIXV9ULSbYCX03ypW7dr1XVraMWKUmanIGBXqtP73qh+7i1e/lEL0naZHp9KZrkpCT7gSPA3VW1r1v1u0keSnJjkpOnVqUkaaBegV5VL1XVDuBMYGeSHwV+A/hh4CeA04BfX2vbJLuSLCdZXllZmVDZkqTjDXXZYlU9A3wFuKSqDteqF4E/AXaus82eqlqqqqWFhYFf0kqSRjQw0JMsJDmlW34V8Fbgn5Ns79oCXAEcmGahkqQT63OVy3Zgb5KTWP0H4HNVdUeSLydZAALsB35pinVKkgboc5XLQ8B5a7RfPJWKJEkj8dZ/SWrEht76L21Wi7vvnNm+D91w2cz2rbY4Q5ekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaMTDQk7wyyd8neTDJw0l+q2t/fZJ9SR5J8tkkr5h+uZKk9fSZob8IXFxVbwJ2AJckuQD4MHBjVZ0D/Adw7fTKlCQNMjDQa9UL3cet3auAi4Fbu/a9wBVTqVCS1Euvc+hJTkqyHzgC3A18A3imqo52XR4HzphOiZKkPnoFelW9VFU7gDOBncAb1+q21rZJdiVZTrK8srIyeqWSpBMa6iqXqnoG+ApwAXBKki3dqjOBJ9bZZk9VLVXV0sLCwji1SpJOoM9VLgtJTumWXwW8FTgI3Au8q+t2NXDbtIqUJA22ZXAXtgN7k5zE6j8An6uqO5L8E/CZJL8D/CNw0xTrlCQNMDDQq+oh4Lw12h9j9Xy6JGkT8E5RSWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUiIGBnuSsJPcmOZjk4STXd+0fSvLNJPu716XTL1eStJ4tPfocBd5fVQ8keQ1wf5K7u3U3VtXvTa88SVJfAwO9qg4Dh7vl55McBM6YdmGSpOEMdQ49ySJwHrCva7ouyUNJbk5y6oRrkyQNoXegJ3k18HngfVX1HPAx4A3ADlZn8B9ZZ7tdSZaTLK+srEygZEnSWnoFepKtrIb5p6rqCwBV9WRVvVRV3wY+Aexca9uq2lNVS1W1tLCwMKm6JUnH6XOVS4CbgINV9dFj2rcf0+2dwIHJlydJ6qvPVS4XAu8GvpZkf9f2AeCqJDuAAg4B75lKhZKkXvpc5fJVIGusumvy5UiSRuWdopLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNGBjoSc5Kcm+Sg0keTnJ9135akruTPNK9nzr9ciVJ6+kzQz8KvL+q3ghcALw3ybnAbuCeqjoHuKf7LEmakYGBXlWHq+qBbvl54CBwBnA5sLfrthe4YlpFSpIGG+ocepJF4DxgH3B6VR2G1dAHXjvp4iRJ/fUO9CSvBj4PvK+qnhtiu11JlpMsr6ysjFKjJKmHXoGeZCurYf6pqvpC1/xkku3d+u3AkbW2rao9VbVUVUsLCwuTqFmStIY+V7kEuAk4WFUfPWbV7cDV3fLVwG2TL0+S1NeWHn0uBN4NfC3J/q7tA8ANwOeSXAv8G/Bz0ylRktTHwECvqq8CWWf1WyZbjiRpVN4pKkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSI/rcWCSpQYu775zZvg/dcNnM9t0yZ+iS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREDAz3JzUmOJDlwTNuHknwzyf7udel0y5QkDdJnhv5J4JI12m+sqh3d667JliVJGtbAQK+q+4CnN6AWSdIYxjmHfl2Sh7pTMqeu1ynJriTLSZZXVlbG2J0k6URGDfSPAW8AdgCHgY+s17Gq9lTVUlUtLSwsjLg7SdIgIwV6VT1ZVS9V1beBTwA7J1uWJGlYIwV6ku3HfHwncGC9vpKkjbFlUIcktwAXAduSPA58ELgoyQ6ggEPAe6ZYoySph4GBXlVXrdF80xRqkSSNwTtFJakRA2fo0kZa3H3nrEuQ5pYzdElqhIEuSY0w0CWpEQa6JDXCQJekRniVizRjXtmjSXGGLkmNMNAlqREGuiQ1wkCXpEYY6JLUCK9y0ct41YU0n5yhS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUiIGBnuTmJEeSHDim7bQkdyd5pHs/dbplSpIG6TND/yRwyXFtu4F7quoc4J7usyRphgYGelXdBzx9XPPlwN5ueS9wxYTrkiQNadRz6KdX1WGA7v21kytJkjSKqX8pmmRXkuUkyysrK9PenST9vzVqoD+ZZDtA935kvY5VtaeqlqpqaWFhYcTdSZIGGTXQbweu7pavBm6bTDmSpFH1uWzxFuBvgR9K8niSa4EbgLcleQR4W/dZkjRDA5+HXlVXrbPqLROuRZI0Bu8UlaRGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjdgyzsZJDgHPAy8BR6tqaRJFSZKGN1agd366qp6awM+RJI3BUy6S1IhxZ+gF/HWSAv64qvYc3yHJLmAXwNlnnz3m7iS1YHH3nTPZ76EbLpvJfjfKuDP0C6vqfODtwHuTvPn4DlW1p6qWqmppYWFhzN1JktYzVqBX1RPd+xHgi8DOSRQlSRreyIGe5HuTvOY7y8DPAAcmVZgkaTjjnEM/Hfhiku/8nE9X1V9OpCpJ0tBGDvSqegx40wRrkSSNwcsWJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGjGJPxKtKZnVn+mSNJ+coUtSIwx0SWqEgS5JjTDQJakRBrokNWJurnKZ5RUfh264bGb7ljQ5reeIM3RJasRYgZ7kkiRfT/Jokt2TKkqSNLyRAz3JScAfAW8HzgWuSnLupAqTJA1nnBn6TuDRqnqsqv4b+Axw+WTKkiQNa5xAPwP492M+P961SZJmYJyrXLJGW72sU7IL2NV9fCHJ10fc3zbgqRG3HUs+PPVdzGxsU+a45k+rY5v5uMbMkdf16TROoD8OnHXM5zOBJ47vVFV7gD1j7AeAJMtVtTTuz9mMWh2b45o/rY6t1XEdb5xTLv8AnJPk9UleAVwJ3D6ZsiRJwxp5hl5VR5NcB/wVcBJwc1U9PLHKJElDGetO0aq6C7hrQrUMMvZpm02s1bE5rvnT6thaHdf/kaqXfY8pSZpD3vovSY3YdIE+6HECSU5O8tlu/b4kixtf5fB6jOuaJCtJ9nevX5xFncNKcnOSI0kOrLM+SX6/G/dDSc7f6BpH0WNcFyV59pjj9ZsbXeMokpyV5N4kB5M8nOT6NfrM6zHrM7a5PG69VdWmebH65eo3gB8EXgE8CJx7XJ9fAT7eLV8JfHbWdU9oXNcAfzjrWkcY25uB84ED66y/FPgSq/ctXADsm3XNExrXRcAds65zhHFtB87vll8D/Msa/y3O6zHrM7a5PG59X5ttht7ncQKXA3u75VuBtyRZ6yanzaTZxyRU1X3A0yfocjnwp7Xq74BTkmzfmOpG12Ncc6mqDlfVA93y88BBXn6H97wesz5ja9pmC/Q+jxP4bp+qOgo8C3z/hlQ3ur6PSfjZ7lfcW5Octcb6edTyIyJ+MsmDSb6U5EdmXcywutOV5wH7jls198fsBGODOT9uJ7LZAr3P4wR6PXJgk+lT818Ai1X1Y8Df8L+/hcy7eTxefTwAvK6q3gT8AfDnM65nKEleDXweeF9VPXf86jU2mZtjNmBsc33cBtlsgd7ncQLf7ZNkC/B9bP5fjQeOq6q+VVUvdh8/Afz4BtU2bb0eETFvquq5qnqhW74L2Jpk24zL6iXJVlYD71NV9YU1usztMRs0tnk+bn1stkDv8ziB24Gru+V3AV+u7tuOTWzguI47R/kOVs//teB24Oe7KycuAJ6tqsOzLmpcSX7gO9/dJNnJ6v9L35ptVYN1Nd8EHKyqj67TbS6PWZ+xzetx62tT/U3RWudxAkl+G1iuqttZPWB/luRRVmfmV86u4n56jutXk7wDOMrquK6ZWcFDSHILq1cObEvyOPBBYCtAVX2c1TuJLwUeBf4T+IXZVDqcHuN6F/DLSY4C/wVcOQcTC4ALgXcDX0uyv2v7AHA2zPcxo9/Y5vW49eKdopLUiM12ykWSNCIDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRvwPuFqm/m1wSFAAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d77b5e1eb8>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADOBJREFUeJzt3W+sZPVdx/H3pyxVI8RS9xY3yPaqIUY0luKGYEgaDNZQSEobawIPKmjNNlpim/QJ4YGt+gQTSxP/pM0SSNEgtinUYqEqYg1pouhCtrBkrcUGlXbDbksEGo1m6dcH90A3t/cy587MvTP3m/crmcyZM7+558Nhz2fPPXPO2VQVkqTd7zWLDiBJmg8LXZKasNAlqQkLXZKasNAlqQkLXZKasNAlqQkLXZKasNAlqYk9O7mwvXv31urq6k4uUpJ2vUcfffQbVbUyadyOFvrq6iqHDx/eyUVK0q6X5N/HjPOQiyQ1YaFLUhMWuiQ1YaFLUhMWuiQ1YaFLUhMWuiQ1YaFLUhMWuiQ1saNXikpaHqs33b+wZT99y9ULW3Zn7qFLUhMWuiQ1YaFLUhMWuiQ1YaFLUhMWuiQ14WmLknbcok6Z7H66pHvoktSEhS5JTVjoktTExEJPcn6SLyQ5luTJJO8f5n84ydeSHBkeV21/XEnSZsZ8KXoK+GBVPZbkbODRJA8O7320qn5/++JJksaaWOhVdRw4Pky/mOQYcN52B5Mkbc2WjqEnWQXeDDwyzLoxyeNJ7khyzpyzSZK2YPR56EnOAu4BPlBVLyT5GPC7QA3PHwF+dYPPHQQOAuzfv38emaVWFnkbW/Uyag89yZmslfldVXUvQFU9W1UvVdW3gduASzb6bFUdqqoDVXVgZWVlXrklSeuMOcslwO3Asaq69bT5+04b9k7g6PzjSZLGGnPI5TLg3cATSY4M824GrktyEWuHXJ4G3rstCSVJo4w5y+WLQDZ464H5x5EkTcsrRSWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqYWOhJzk/yhSTHkjyZ5P3D/NcneTDJV4bnc7Y/riRpM2P20E8BH6yqnwAuBd6X5ELgJuChqroAeGh4LUlakImFXlXHq+qxYfpF4BhwHnANcOcw7E7gHdsVUpI02ZaOoSdZBd4MPAKcW1XHYa30gTds8pmDSQ4nOXzy5MnZ0kqSNjW60JOcBdwDfKCqXhj7uao6VFUHqurAysrKNBklSSOMKvQkZ7JW5ndV1b3D7GeT7Bve3wec2J6IkqQxxpzlEuB24FhV3XraW/cB1w/T1wOfnX88SdJYe0aMuQx4N/BEkiPDvJuBW4BPJXkP8B/AL21PREnSGBMLvaq+CGSTt6+YbxxJ0rS8UlSSmrDQJakJC12SmrDQJakJC12SmrDQJakJC12SmrDQJakJC12SmrDQJakJC12SmrDQJakJC12SmrDQJakJC12SmrDQJakJC12SmrDQJakJC12SmrDQJakJC12SmrDQJakJC12SmrDQJakJC12SmrDQJakJC12SmrDQJakJC12SmphY6EnuSHIiydHT5n04ydeSHBkeV21vTEnSJGP20D8BXLnB/I9W1UXD44H5xpIkbdXEQq+qh4HndiCLJGkGsxxDvzHJ48MhmXPmlkiSNJVpC/1jwI8BFwHHgY9sNjDJwSSHkxw+efLklIuTJE0yVaFX1bNV9VJVfRu4DbjkVcYeqqoDVXVgZWVl2pySpAmmKvQk+057+U7g6GZjJUk7Y8+kAUnuBi4H9iZ5BvgQcHmSi4ACngbeu40ZJUkjTCz0qrpug9m3b0MWSdIMvFJUkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqw0CWpCQtdkpqYWOhJ7khyIsnR0+a9PsmDSb4yPJ+zvTElSZOM2UP/BHDlunk3AQ9V1QXAQ8NrSdICTSz0qnoYeG7d7GuAO4fpO4F3zDmXJGmLpj2Gfm5VHQcYnt8wv0iSpGns2e4FJDkIHATYv3//di9OmsrqTfcvOoI0s2n30J9Nsg9geD6x2cCqOlRVB6rqwMrKypSLkyRNMm2h3wdcP0xfD3x2PnEkSdMac9ri3cA/AD+e5Jkk7wFuAd6a5CvAW4fXkqQFmngMvaqu2+StK+acRZI0A68UlaQmLHRJasJCl6Qmtv08dElaFou83uDpW67e9mW4hy5JTVjoktSEhS5JTVjoktSEhS5JTVjoktSEhS5JTVjoktSEhS5JTVjoktSEhS5JTVjoktSEhS5JTVjoktSEhS5JTVjoktSEhS5JTVjoktSEhS5JTVjoktSEhS5JTVjoktSEhS5JTVjoktSEhS5JTVjoktTEnlk+nORp4EXgJeBUVR2YRyhJ0tbNVOiDn6uqb8zh50iSZuAhF0lqYtZCL+Bvkjya5OBGA5IcTHI4yeGTJ0/OuDhJ0mZmLfTLqupi4G3A+5K8Zf2AqjpUVQeq6sDKysqMi5MkbWamQq+qrw/PJ4DPAJfMI5QkaeumLvQk35/k7JengV8Ajs4rmCRpa2Y5y+Vc4DNJXv45f1ZVfzWXVJKkLZu60Kvqq8Cb5phFkjQDT1uUpCYsdElqwkKXpCYsdElqwkKXpCYsdElqwkKXpCYsdElqwkKXpCYsdElqwkKXpCYsdElqwkKXpCYsdElqwkKXpCYsdElqwkKXpCYsdElqwkKXpCYsdElqwkKXpCYsdElqwkKXpCYsdElqwkKXpCb2LDrAWKs33b+wZT99y9ULW/YiLHJdS5qee+iS1ISFLklNWOiS1MRMhZ7kyiRfTvJUkpvmFUqStHVTF3qSM4A/Bt4GXAhcl+TCeQWTJG3NLHvolwBPVdVXq+r/gD8HrplPLEnSVs1S6OcB/3na62eGeZKkBZjlPPRsMK++a1ByEDg4vPxWki9Puby9wDem/OxM8ntbGr6wnFPYLVnNOX+7JWubnFvskfXeOGbQLIX+DHD+aa9/GPj6+kFVdQg4NMNyAEhyuKoOzPpztttuyQm7J6s552+3ZDXn1sxyyOWfgQuS/EiS1wLXAvfNJ5Ykaaum3kOvqlNJbgT+GjgDuKOqnpxbMknSlsx0L5eqegB4YE5ZJpn5sM0O2S05YfdkNef87Zas5tyCVH3X95iSpF3IS/8lqYmlK/RJtxNI8j1JPjm8/0iS1Z1POSrnDUlOJjkyPH5tQTnvSHIiydFN3k+SPxj+Ox5PcvFOZxxyTMp5eZLnT1ufv7XTGYcc5yf5QpJjSZ5M8v4Nxix8nY7MuSzr9HuT/FOSLw1Zf3uDMQvf7kfmXOx2X1VL82Dty9V/A34UeC3wJeDCdWN+A/j4MH0t8MklzXkD8EdLsE7fAlwMHN3k/auAz7N2XcGlwCNLmvNy4HNLsD73ARcP02cD/7rB//uFr9OROZdlnQY4a5g+E3gEuHTdmGXY7sfkXOh2v2x76GNuJ3ANcOcw/WngiiQbXeS0nXbNbQ+q6mHguVcZcg3wJ7XmH4HXJdm3M+m+Y0TOpVBVx6vqsWH6ReAY332F9MLX6cicS2FYT98aXp45PNZ/ubfw7X5kzoVatkIfczuBV8ZU1SngeeAHdyTdBhkGm9324BeHX7k/neT8Dd5fBrvpFg4/O/y6+/kkP7noMMOv/W9mbU/tdEu1Tl8lJyzJOk1yRpIjwAngwaradJ0ucLsfkxMWuN0vW6GPuZ3AqFsObLMxGf4SWK2qnwb+lu/sXSybZVifYzwGvLGq3gT8IfAXiwyT5CzgHuADVfXC+rc3+MhC1umEnEuzTqvqpaq6iLUrzi9J8lPrhizFOh2Rc6Hb/bIV+pjbCbwyJske4AfY+V/VJ+asqm9W1f8OL28DfmaHsm3VqFs4LFpVvfDyr7u1dv3DmUn2LiJLkjNZK8m7qureDYYsxTqdlHOZ1ulpmf4L+HvgynVvLcN2/4rNci56u1+2Qh9zO4H7gOuH6XcBf1fDtxE7aGLOdcdM387aMcxldB/wy8OZGZcCz1fV8UWHWi/JD718zDTJJaz92f3mAnIEuB04VlW3bjJs4et0TM4lWqcrSV43TH8f8PPAv6wbtvDtfkzORW/3M10pOm+1ye0EkvwOcLiq7mPtD+mfJnmKtb+hr13SnL+Z5O3AqSHnDTudEyDJ3aydzbA3yTPAh1j7Moeq+jhrV/peBTwF/DfwK0ua813Aryc5BfwPcO0C/iIHuAx4N/DEcCwV4GZg/2lZl2Gdjsm5LOt0H3Bn1v7RnNcAn6qqzy3bdj8y50K3e68UlaQmlu2QiyRpSha6JDVhoUtSExa6JDVhoUtSExa6JDVhoUtSExa6JDXx/+tLSz0CZs9kAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d778fff240>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADgpJREFUeJzt3X2sXHWdx/HPR4q4CtFiL6RB8BJCiGi0uDcNSRODy7pWaihks0lrNMVg6gP4EE3MVf/wYf+p8QGz2Y1ahFh3BUSUgBQfasWgUaq3WqGlsmXrVZGGXqwPEBM3LV//mN/F4TK3c2bmzJy5X96vZDJnzvnN/X3z6+9+euacOec6IgQAWPqe1XQBAIB6EOgAkASBDgBJEOgAkASBDgBJEOgAkASBDgBJEOgAkASBDgBJLBtlZytWrIjJyclRdgkAS97u3bsfjYiJbu1GGuiTk5OamZkZZZcAsOTZ/nWVdhxyAYAkCHQASIJAB4AkCHQASIJAB4AkCHQASIJAB4AkCHQASIJAB4AkRnqlKDCuJqe3N9b37JZ1jfWNXNhDB4AkCHQASIJAB4Akuga67TNt32V7v+19tt9d1n/E9u9s7ymPS4ZfLgBgMVVOih6V9L6I+JntUyTttr2jbLsmIj45vPIAAFV1DfSIOCTpUFl+zPZ+SWcMuzAAQG96OoZue1LSBZJ2lVVX277X9vW2l9dcGwCgB5UD3fbJkr4m6T0R8WdJn5V0jqRVau3Bf2qR9222PWN7Zm5uroaSAQCdVAp02yeqFeZfjoivS1JEPBIRxyLiCUnXSlrd6b0RsTUipiJiamKi65/EAwD0qcq3XCzpOkn7I+LTbetXtjW7XNLe+ssDAFRV5VsuayS9SdJ9tveUdR+UtNH2KkkhaVbSW4dSIQCgkirfcvmhJHfYdGf95QAA+sWVogCQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQRJWbcwEjMzm9vekSgCWLPXQASIJAB4AkCHQASIJAB4AkCHQASIJAB4AkCHQASIJAB4AkCHQASIJAB4AkCHQASIJAB4AkCHQASIJAB4AkCHQASIJAB4AkCHQASIJAB4AkCHQASKJroNs+0/Zdtvfb3mf73WX9qbZ32D5QnpcPv1wAwGKq7KEflfS+iHiJpAslXWX7fEnTknZGxLmSdpbXAICGdA30iDgUET8ry49J2i/pDEnrJW0rzbZJumxYRQIAuuvpGLrtSUkXSNol6fSIOCS1Ql/SaXUXBwCornKg2z5Z0tckvSci/tzD+zbbnrE9Mzc310+NAIAKKgW67RPVCvMvR8TXy+pHbK8s21dKOtzpvRGxNSKmImJqYmKijpoBAB1U+ZaLJV0naX9EfLpt0+2SNpXlTZJuq788AEBVyyq0WSPpTZLus72nrPugpC2SbrZ9paTfSPq34ZQIAKiia6BHxA8leZHNF9dbDgCgX1wpCgBJEOgAkASBDgBJEOgAkASBDgBJEOgAkASBDgBJEOgAkASBDgBJEOgAkASBDgBJEOgAkASBDgBJEOgAkASBDgBJEOgAkASBDgBJEOgAkESVvymKZ5jJ6e1NlwCgD+yhA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJNE10G1fb/uw7b1t6z5i+3e295THJcMtEwDQTZU99C9KWtth/TURsao87qy3LABAr7oGekTcLenICGoBAAxgkGPoV9u+txySWb5YI9ubbc/YnpmbmxugOwDA8fQb6J+VdI6kVZIOSfrUYg0jYmtETEXE1MTERJ/dAQC66SvQI+KRiDgWEU9IulbS6nrLAgD0qq9At72y7eXlkvYu1hYAMBpd/6ao7RslXSRphe2HJH1Y0kW2V0kKSbOS3jrEGgEAFXQN9IjY2GH1dUOoBQAwAK4UBYAkCHQASIJAB4AkCHQASIJAB4AkCHQASIJAB4AkCHQASIJAB4AkCHQASKLrpf8Ahmtyensj/c5uWddIvxge9tABIAkCHQCSINABIAkCHQCSINABIAkCHQCSINABIAkCHQCSINABIAkCHQCSINABIAkCHQCSINABIAkCHQCSINABIAkCHQCSINABIAkCHQCSINABIImugW77etuHbe9tW3eq7R22D5Tn5cMtEwDQTZU99C9KWrtg3bSknRFxrqSd5TUAoEFdAz0i7pZ0ZMHq9ZK2leVtki6ruS4AQI/6PYZ+ekQckqTyfFp9JQEA+jH0k6K2N9uesT0zNzc37O4A4Bmr30B/xPZKSSrPhxdrGBFbI2IqIqYmJib67A4A0E2/gX67pE1leZOk2+opBwDQrypfW7xR0o8lnWf7IdtXStoi6TW2D0h6TXkNAGjQsm4NImLjIpsurrkWAMAAuFIUAJIg0AEgCQIdAJIg0AEgCQIdAJIg0AEgCQIdAJIg0AEgCQIdAJIg0AEgCQIdAJLoei8XNGdyenvTJQBYQthDB4AkCHQASIJAB4AkCHQASIJAB4AkCHQASIJAB4Ak+B468AzV5HUOs1vWNdZ3ZuyhA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASBDoAJEGgA0ASA93LxfaspMckHZN0NCKm6igKANC7Om7O9eqIeLSGnwMAGACHXAAgiUEDPSR9x/Zu25vrKAgA0J9BD7msiYiHbZ8maYftX0bE3e0NStBvlqSzzjprwO4AAIsZaA89Ih4uz4cl3SppdYc2WyNiKiKmJiYmBukOAHAcfQe67efZPmV+WdK/SNpbV2EAgN4McsjldEm32p7/OTdExLdqqQoA0LO+Az0iDkp6RY21AAAGwNcWASAJAh0AkiDQASAJAh0AkiDQASAJAh0AkiDQASAJAh0AkiDQASAJAh0AkiDQASCJOv4EHQD0ZHJ6eyP9zm5Z10i/o8IeOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAksWTuh97U/ZMB5NFkjoziXuzsoQNAEgQ6ACRBoANAEgMFuu21th+w/aDt6bqKAgD0ru9At32CpP+S9DpJ50vaaPv8ugoDAPRmkD301ZIejIiDEfH/km6StL6esgAAvRok0M+Q9Nu21w+VdQCABgzyPXR3WBdPa2RvlrS5vHzc9gMD9NnNCkmPDvHn14U667VU6pSWTq3UWTN/fKBaX1yl0SCB/pCkM9tev0jSwwsbRcRWSVsH6Kcy2zMRMTWKvgZBnfVaKnVKS6dW6qzfKGod5JDLTyWda/ts28+WtEHS7fWUBQDoVd976BFx1PbVkr4t6QRJ10fEvtoqAwD0ZKB7uUTEnZLurKmWOozk0E4NqLNeS6VOaenUSp31G3qtjnjaeUwAwBLEpf8AkMTYB7rt59j+ie1f2N5n+6Md2rzX9v2277W90/aL27Yds72nPIZ60rZirVfYnmur6S1t2zbZPlAemxqu85q2Gv/X9h/bto1sTEt/J9j+ue07Omw7yfZXyu0ndtmebNv2gbL+AduvbbjOsZijFepsfH72UOtYzFHbs7bvK33NdNhu2/9R5uK9tl/Ztq3eMY2IsX6o9X33k8vyiZJ2SbpwQZtXS3puWX67pK+0bXt8zGq9QtJ/dnjvqZIOluflZXl5U3UuaP9OtU56j3xMS3/vlXSDpDs6bHuHpM+V5Q3z//Zq3Y7iF5JOknS2pP+TdEKDdY7FHK1QZ+Pzs2qtC9o1NkclzUpacZztl0j6Zvm9u1DSrmGN6djvoUfL4+XlieURC9rcFRF/KS/vUes78SNXpdbjeK2kHRFxJCL+IGmHpLVDKLOfOjdKunEYtXRj+0WS1kn6wiJN1kvaVpZvkXSxbZf1N0XEXyPiV5IeVOt2FY3UOS5ztMJ4LmZk83Nej7U2NkcrWC/pS+X37h5JL7C9UkMY07EPdOnJj117JB1WawB2Haf5lWr9bzjvObZnbN9j+7KhFqrKtf5r+eh1i+35i7NGeiuFqmNaDg2cLel7batHOaafkfR+SU8ssv3JcYuIo5L+JOmFGv2tKbrV2a7JOVqlzsbnZ1FpTMdgjoak79je7daV8QstNna1j+mSCPSIOBYRq9Taq1lt+2Wd2tl+o6QpSZ9oW31WtK7OeoOkz9g+p+FavyFpMiJeLum7+vveZaVbKYywznkbJN0SEcfa1o1kTG2/XtLhiNh9vGYd1sVx1teuYp3zbRuboxXrHIv52cuYqsE5WqyJiFeqdefZq2y/asH2kc3RJRHo8yLij5K+rw4fS2z/s6QPSbo0Iv7a9p6Hy/PB8t4Lmqw1In7fVt+1kv6xLFe6lULdjjemxQYt+Cg7wjFdI+lS27Nq3c3zn2z/z4I2T46b7WWSni/piEY7nlXqHIc52rXOMZqflca0aHKOtvd1WNKtevqhvcXGrv4xHdWJg34fkiYkvaAs/4OkH0h6/YI2F6h10uvcBeuXSzqpLK+QdEDS+Q3XurJt+XJJ98TfT5D8qtS8vCyf2lSdZdt5ap3wcVNj2tbvRep8Eu8qPfWk6M1l+aV66knRgxrySdEudY7FHK1QZ+Pzs2qt4zBHJT1P0iltyz+StHZBm3V66knRnwxrTAe6UnREVkra5tYf1HiWWr+wd9j+mKSZiLhdrY+vJ0v6aut8mH4TEZdKeomkz9t+orx3S0Tc33Ct77J9qaSjau1JXiFJEXHE9r+rdY8cSfpYRBxpsE6pdaLppiizrxj1mD7Ngjqvk/Tfth9Uazw3SFJE7LN9s6T71Rrrq+KpH8lHXee4zNFudY7D/Kxaq9T8HD1d0q3l33SZpBsi4lu23yZJEfE5ta6mv0StE/N/kfTmsq32MeVKUQBIYkkdQwcALI5AB4AkCHQASIJAB4AkCHQASIJAB4AkCHQASIJAB4Ak/gZ0sP9ICU+zpQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d77b6486d8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import networkx as nx\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import itertools\n", "\n", "def findsubsets(S,m):\n", " return set(itertools.combinations(S, m))\n", "\n", "def boundary_length(G,aSet):\n", " all_crossing_edges=set([])\n", " for a in aSet:\n", " current_targets=nx.all_neighbors(G,a)\n", " for current_target in current_targets:\n", " if current_target not in aSet:\n", " all_crossing_edges.add((a,current_target))\n", " return len(all_crossing_edges)\n", "\n", "def get_Cheeger(G):\n", " vertices=nx.nodes(G)\n", " num_vertices=len(vertices)\n", " currentMin=num_vertices**2\n", " for subset_size in range((int)(num_vertices/2)):\n", " possibleASets=findsubsets(vertices,subset_size+1)\n", " for aSet in possibleASets:\n", " currentValue=boundary_length(G,aSet)/(subset_size+1.0)\n", " if (currentValue<currentMin):\n", " currentMin=currentValue\n", " return currentMin\n", "\n", "def plot_graph_degrees(G,num_rows,current_row,graph_description):\n", " ax1=plt.subplot(num_rows,2,current_row*2+2)\n", " ax1.plot(nx.degree_histogram(G))\n", " ax1.set(title=graph_description+' degree histogram')\n", " ax2=plt.subplot(num_rows,2,current_row*2+1)\n", " ax2.set(title=graph_description+' graph')\n", " nx.draw(G,ax=ax2)\n", "\n", "def plot_degrees(G,num_rows,current_row,graph_description):\n", " ax1=plt.subplot(num_rows,1,current_row+1)\n", " ax1.set(title=graph_description+' degree histogram')\n", " ax1.plot(nx.degree_histogram(G))\n", "\n", "def plot_graph_degrees_BA(n,m,num_rows,current_row):\n", " G=nx.barabasi_albert_graph(n,m)\n", " plot_graph_degrees(G,num_rows,current_row,'BA %i %i'%(n,m))\n", "\n", "def plot_degrees_BA(n,m,num_rows,current_row):\n", " G=nx.barabasi_albert_graph(n,m)\n", " plot_degrees(G,num_rows,current_row,'BA %i %i'%(n,m))\n", " \n", "def plot_graph_degrees_Gnp(n,p,num_rows,current_row):\n", " G=nx.gnp_random_graph(n,p)\n", " plot_graph_degrees(G,num_rows,current_row,'G_{n=%i p=%i}'%(n,p))\n", "\n", "def plot_degrees_Gnp(n,m,num_rows,current_row):\n", " G=nx.gnp_random_graph(n,p)\n", " plot_degrees(G,num_rows,current_row,'G_{n=%i p=%i}'%(n,p))\n", " \n", "def prob_connected_Gnp(n,p,num_samples):\n", " num_connected=0\n", " for i in range(num_samples):\n", " G=nx.gnp_random_graph(n,p)\n", " num_connected+=nx.is_connected(G)\n", " return (num_connected+.0)/(num_samples)\n", "\n", "def plot_prob_connected_Gnp(n,num_samples,dp):\n", " all_ps=np.linspace(0,1,dp)\n", " num_grid_points=len(all_ps)\n", " all_probs=np.zeros(num_grid_points)\n", " for i in range(num_grid_points):\n", " all_probs[i]=prob_connected_Gnp(n,all_ps[i],num_samples)\n", " fig,ax=plt.subplots()\n", " ax.plot(all_ps,all_probs)\n", " ax.set(xlabel='p',ylabel='Probability connected',title=('G_{n=%i,p}' % n))\n", "\n", "def plot_Cheeger_Gnp(n,p,num_samples=100):\n", " cheeger_vals=np.zeros(num_samples)\n", " for i in range(num_samples):\n", " G=nx.gnp_random_graph(n,p)\n", " cheeger_vals[i]=get_Cheeger(G)\n", " plt.hist(cheeger_vals)\n", " plt.show()\n", " \n", "plot_prob_connected_Gnp(10,100,50)\n", "plt.show()\n", "\n", "#possible_n=[10,50,100,200]\n", "possible_n=[10,50]\n", "#possible_m=[5,5,5,5]\n", "possible_m=[5,5]\n", "len_possible_n=len(possible_n)\n", "for iteration in range(len_possible_n):\n", " plot_graph_degrees_BA(possible_n[iteration],possible_m[iteration],len_possible_n,iteration)\n", "plt.show()\n", "\n", "for iteration in range(len_possible_n):\n", " plot_degrees_BA(possible_n[iteration],possible_m[iteration],len_possible_n,iteration)\n", "plt.show()\n", "\n", "plot_Cheeger_Gnp(10,.1)\n", "plot_Cheeger_Gnp(10,.3)\n", "plot_Cheeger_Gnp(10,.5)\n", "plot_Cheeger_Gnp(10,.7)\n", "plot_Cheeger_Gnp(10,.9)" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "5.0" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "G=nx.gnp_random_graph(10,1)\n", "get_Cheeger(G)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]\n", "[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]\n", "[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]\n", "[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]\n" ] } ], "source": [ "import networkx as nx\n", "import numpy as np\n", "def modularity_Gnp(n,p):\n", " G=nx.gnp_random_graph(n,p)\n", " modularity_matrix=nx.adjacency_matrix(G).toarray()\n", " degrees=np.zeros(n)\n", " for j in range(n):\n", " degrees[j]=sum(modularity_matrix[j])\n", " num_half_edges=sum(degrees)\n", " for k in range(n):\n", " for l in range(n):\n", " #print(modularity_matrix[k,l])\n", " modularity_matrix[k,l]-=degrees[k]*degrees[l]/(num_half_edges+.0)\n", " #print(modularity_matrix[k,l])\n", " return modularity_matrix\n", "\n", "print(modularity_Gnp(20,.3))\n", "print(modularity_Gnp(20,.5))\n", "print(modularity_Gnp(20,.7))\n", "print(modularity_Gnp(20,.9))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }