-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_InnoIndicator.py
233 lines (181 loc) · 7.02 KB
/
train_InnoIndicator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import numpy as np
import pandas as pd
import os
import joblib
import matplotlib.pyplot as plt
from toolbox import Handler,Indicator
from innovation_indicator import InnoIndicator
from indicator_tools import DataLoader
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder, PolynomialFeatures
from sklearn.linear_model import LogisticRegression, Lasso, Ridge, LinearRegression
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_predict
from sklearn.decomposition import PCA
from sklearn.base import TransformerMixin, BaseEstimator, clone
from sklearn.metrics import r2_score
class FactorExtractor(TransformerMixin, BaseEstimator):
def __init__(self, factor):
'''
Custom transformer that selects the given features from a pandas DataFrame.
This object can easily be integrated in a Pipeline.
'''
self.factor = factor
def transform(self, data):
missing = set(self.factor).difference(data.columns)
if len(missing)!=0:
data = data.assign(MERGE_FLAG=np.nan)
data = pd.merge(data,pd.DataFrame([],columns=['MERGE_FLAG']+list(missing)),how='left').drop('MERGE_FLAG',1)
return data[self.factor]
def fit(self, *_):
return self
def param_search(pipelines,X,Y):
best_params = {}
param_grid = {'lasso__alpha': np.logspace(-5,0,6)}
search = GridSearchCV(pipelines['Lasso'], param_grid, n_jobs=-1,cv=int(0.1*len(Y)))
search.fit(X,Y)
best_params = {**best_params,**search.best_params_}
param_grid = {'ridge__alpha': np.logspace(-5,0,6),}
search = GridSearchCV(pipelines['Ridge'], param_grid, n_jobs=-1,cv=int(0.1*len(Y)))
search.fit(X,Y)
best_params = {**best_params,**search.best_params_}
return best_params
def CV_r2(model,X,Y):
Y_pred = cross_val_predict(model,X,Y,cv=len(Y))
return r2_score(Y, Y_pred)
def CV_test_model(test_pipelines,X,Y,draw_scatter=False,find_best_params=False):
for model in test_pipelines.values():
model.fit(X, Y)
if find_best_params:
best_params = param_search(test_pipelines,X,Y)
print('Best Parameters:',best_params)
if draw_scatter:
plt.figure(figsize=(15,7))
i=1
for k in test_pipelines:
model = test_pipelines[k]
print('LeaveOneOut cross validation score {}:'.format(k))
Y_pred = cross_val_predict(model,X,Y,cv=len(Y))
print('\tR2 score:',print(r2_score(Y, Y_pred)))
plt.subplot(1,len(test_pipelines),i)
i+=1
plt.plot(Y_pred,Y,'o')
else:
for k in test_pipelines:
model = test_pipelines[k]
print('LeaveOneOut cross validation score {}:'.format(k))
print('\tR2 score:',CV_r2(model,X,Y))
def define_sks_pipeline(feature_list):
numeric_features = feature_list
numeric_transformer = Pipeline([
('imputer',SimpleImputer()),
('scaler', StandardScaler()),
('cuadratic',PolynomialFeatures(degree=2))
])
preprocessor = ColumnTransformer([
('num', numeric_transformer, numeric_features)
])
pipeline_r = Pipeline([
('extractor',FactorExtractor(numeric_features)),
('preprocessor', preprocessor),
('ridge',Ridge(alpha=1.,max_iter=10000))
])
pipeline_l = Pipeline([
('extractor',FactorExtractor(numeric_features)),
('preprocessor', preprocessor),
('lasso',Lasso(alpha=0.01,max_iter=10000))
])
return pipeline_r,pipeline_l
def define_kno_pipeline(feature_list):
categorical_features = ['CBSAFP']
numeric_features = [f for f in feature_list if f not in categorical_features]
numeric_transformer = Pipeline([
('imputer',SimpleImputer()),
('scaler', StandardScaler()),
('cuadratic',PolynomialFeatures(degree=2))
])
categorical_transformer = Pipeline([
('imputer',SimpleImputer(strategy="constant",fill_value=0)),
('onehot', OneHotEncoder(handle_unknown='ignore'))
])
preprocessor = ColumnTransformer([
('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features)
])
pipeline_r = Pipeline([
('extractor',FactorExtractor(numeric_features+categorical_features)),
('preprocessor', preprocessor),
('ridge',Ridge(alpha=1.,max_iter=100000))
])
pipeline_l = Pipeline([
('extractor',FactorExtractor(numeric_features+categorical_features)),
('preprocessor', preprocessor),
('lasso',Lasso(alpha=0.001,max_iter=100000))
])
return pipeline_r,pipeline_l
def train_sks_indicator(data,sks_model_path,test_model=True,draw_scatter=False,find_best_params=False):
msa_skills = data.msa_skills
skills_columns = msa_skills.drop('GEOID',1).columns.tolist()
df = msa_skills
df = df.assign(TOT_SKS=df[skills_columns].sum(1))
for c in skills_columns:
df[c] = df[c]/df['TOT_SKS']
df = pd.merge(df,data.nPats,how='inner')
df = pd.merge(df,data.emp_msa.groupby('GEOID').sum().reset_index())
df = df.assign(pats_pc = df['nPats']/df['pop'])
X = df.drop(['GEOID','nPats','pop','pats_pc','TOT_EMP','TOT_SKS'],1)
Y = np.log(df['pats_pc'].values)
feature_list = X.columns.tolist()
pipeline_r,pipeline_l = define_sks_pipeline(feature_list)
if test_model:
test_pipelines = {
'Ridge': clone(pipeline_r),
'Lasso': clone(pipeline_l)
}
print('Testing SKS indicators')
CV_test_model(test_pipelines,X,Y,draw_scatter=draw_scatter,find_best_params=find_best_params)
pipeline_l.fit(X,Y)
joblib.dump(pipeline_l,sks_model_path)
def train_kno_indicator(data,kno_model_path,test_model=True,draw_scatter=False,find_best_params=False):
zip_knowledge = data.zip_knowledge
knowledge_columns = zip_knowledge.drop('ZCTA5CE10',1).columns.tolist()
df = zip_knowledge
df = df.assign(TOT_KNO=df[knowledge_columns].sum(1))
for c in knowledge_columns:
df[c] = df[c]/df['TOT_KNO']
df = pd.merge(df,data.emp_zip.groupby('ZCTA5CE10').sum()[['TOT_EMP']].reset_index())
df = pd.merge(df,data.emp_zip[['ZCTA5CE10','CBSAFP']].drop_duplicates())
df = df.assign(ZCTA5CE10=('000'+df['ZCTA5CE10'].astype(str)).str[-5:])
df = pd.merge(df,data.RECPI[['zipcode','state','RECPI','EQI','SFR']].rename(columns={'zipcode':'ZCTA5CE10'}))
df = df[df['state'].isin(['MI','WI','IK','OH','IN','MN','IA','MO'])]
df = df[df['SFR']>1]
df = df[df['EQI']>0.0002041]
X = df.drop(['ZCTA5CE10','TOT_KNO','state','TOT_EMP','RECPI','EQI','SFR'],1,errors='ignore')
Y = df['EQI'].values
Y = np.log(Y-min(Y)+0.000001)
feature_list = X.columns.tolist()
pipeline_r,pipeline_l = define_kno_pipeline(feature_list)
if test_model:
test_pipelines = {
'Ridge': clone(pipeline_r),
'Lasso': clone(pipeline_l)
}
print('Testing KNO indicators')
CV_test_model(test_pipelines,X,Y,draw_scatter=draw_scatter,find_best_params=find_best_params)
pipeline_l.fit(X,Y)
joblib.dump(pipeline_l,kno_model_path)
def main():
modelPath = 'tables/innovation_data'
sks_model_path = os.path.join(modelPath,'sks_model.joblib')
kno_model_path = os.path.join(modelPath,'kno_model.joblib')
data = DataLoader()
data.load_OCC_data()
data.load_MSA_data()
data.load_patent_data()
data.load_onet_data()
data.load_RECPI()
train_sks_indicator(data,sks_model_path,test_model=False)
train_kno_indicator(data,kno_model_path,test_model=False)
if __name__ == '__main__':
main()