-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
302 lines (259 loc) · 9.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import numpy as np
import torch
import scipy
from torch.utils.data import Dataset
from torchvision.utils import save_image
from torch.optim import Optimizer
from keras.utils import to_categorical
from sklearn.cluster import KMeans
from collections import Counter
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
def target_distribution(q):
"""
compute the target distribution of t distribtion
"""
weight = q ** 2 / q.sum(0)
return (weight.T / weight.sum(1)).T
def acc(y_true,y_pred):
"""
Calculate clustering accuracy. Require scikit-learn installed
# Arguments
y: true labels, numpy.array with shape `(n_samples,)`
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
# Return
accuracy, in [0,1]
"""
y_true = y_true.type(torch.int64)
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.shape[0]):
w[y_pred[i], y_true[i]] += 1
ind = scipy.optimize.linear_sum_assignment(w.max() - w)
return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.shape[0]
def Precision(y,y_predict):
leng = len(y)
nomaly = sum(y,1).item()
miss = 0
for i in range(leng):
if y[i] == 1 and y_predict[i] == 0:
miss +=1
return (nomaly-miss)/nomaly
def Accuracy(y,y_predict):
leng = len(y)
miss = 0
for i in range(leng):
if not y[i]==y_predict[i]:
miss +=1
return (leng-miss)/leng
def getLocalCenter(model,trainloader,major_classes,device):
data_len = len(trainloader)
class0 = []
class1 = []
class2 = []
for cnt, (X,y) in enumerate(trainloader):
X = X.to(device)
code = model.module.Encoder(X).to(device)
for i in range(len(code)):
if y[i] == major_classes[0]:
class0.append(code[i].detach().cpu().numpy())
if y[i] == major_classes[1]:
class1.append(code[i].detach().cpu().numpy())
if y[i] == major_classes[2]:
class2.append(code[i].detach().cpu().numpy())
class0 = torch.DoubleTensor(class0)
center0 = class0.mean(axis=0)
std0 = class0.std(axis=0)
class1 = torch.DoubleTensor(class1)
center1 = class1.mean(axis=0)
std1 = class1.std(axis=0)
class2 = torch.DoubleTensor(class2)
center2 = class2.mean(axis=0)
std2 = class2.std(axis=0)
del y
del X
return [center0,center1,center2],[std0,std1,std2]
def getLocalCenters(model,Loaders_train,num_users,Major_classes,device):
centers = []
stds = []
for idx in range(num_users):
center,std = getLocalCenter(model,Loaders_train[idx],Major_classes[idx],device)
centers.append(center)
stds.append(std)
return centers,stds
def allocatePairs(num_users):
num_pairs = int(num_users/2)
Pairs, all_clients = {}, [i for i in range(num_users)]
for i in range(num_pairs):
client_pair = np.random.choice(all_clients, 2,replace=False)
client1 = client_pair[0]
client2 = client_pair[1]
Pairs[int(client1)] = int(client2)
Pairs[int(client2)] = int(client1)
pair = set(client_pair)
all_clients = list(set(all_clients) - pair)
return Pairs
def save_decoded_image(args,img, name):
if args.dataset == 'CIFAR100' or args.dataset == 'CIFAR10':
img = img.view(img.size(0), 3, 32, 32)
if args.dataset == 'FMNIST':
img = img.view(img.size(0), 1, 28, 28)
save_image(img, name)
def reparameterize(mu, logVar):
#Reparameterization takes in the input mu and logVar and sample the mu + std * eps
std = torch.exp(logVar/2)
eps = torch.randn_like(std)
return mu + std * eps
def getLocalMean(model,trainloader,major_classes,device):
data_len = len(trainloader)
Mu = []
Var = []
for i in range(len(major_classes)):
mu = []
var = []
Mu.append(mu)
Var.append(var)
for cnt, (X,y) in enumerate(trainloader):
X = X.to(device)
m = torch.nn.Sigmoid()
X = m(X)
mu,logVar,p,_ = model(X)
var = logVar
for i in range(len(mu)):
for j in range(len(major_classes)):
if y[i] == major_classes[j]:
Mu[j].append(mu[i].detach().cpu().numpy())
Var[j].append(var[i].detach().cpu().numpy())
break
for i in range(len(major_classes)):
Mu[i] = torch.DoubleTensor(Mu[i])
Var[i] = torch.DoubleTensor(Var[i])
del y
del X
return Mu,Var
def getLocalMeans(Models,Loaders_train,num_users,Major_classes,device):
Mus = []
Vars = []
for idx in range(num_users):
Mu, Var = getLocalMean(Models[idx],Loaders_train[idx],Major_classes[idx],device)
Mus.append(Mu)
Vars.append(Var)
return Mus, Vars
def getLocalMeans_global(model,Loaders_train,num_users,Major_classes,device):
Mus = []
Vars = []
for idx in range(num_users):
Mu, Var = getLocalMean(model,Loaders_train[idx],Major_classes[idx],device)
Mus.append(Mu)
Vars.append(Var)
return Mus, Vars
class ConcatDataset(Dataset):
def __init__(self, dataloader1, dataloader2,device):
for idx,(X, y) in enumerate(dataloader1):
m = torch.nn.Sigmoid()
X = m(X)
if idx == 0:
X0 = X.to(device)
y0 = y.to(device)
else:
X0 = torch.cat((X0,X.to(device)),dim = 0)
y0 = torch.cat((y0,y.to(device)),dim = 0)
for idx,(X, y) in enumerate(dataloader2):
X0 = torch.cat((X0,X.to(device)),dim = 0)
y0 = torch.cat((y0,y.to(device)),dim = 0)
self.X = X0
self.y = y0
def __getitem__(self, idx):
return self.X[idx],self.y[idx]
def __len__(self):
return len(self.y)
class GenData(Dataset):
def __init__(self,
args,
model_generate,
model_recognize,
Mean,
Var,
major_classes,
num_gen,
std,
device,
idx):
super(GenData, self).__init__()
self.Mean = Mean
self.Var = Var
self.num_gen = num_gen
X = []
y = []
Generate_Latent = []
print(major_classes)
m = len(major_classes)
for i in range(m):
count = 0
z = []
for j in range(len(Mean[i])):
lantency = reparameterize(Mean[i][j],Var[i][j])
z.append(lantency)
if len(z) == 0:
continue
index_range = range(len(z))
if len(z) > 20:
sample_idex = np.random.choice(index_range,size=int(0.1*len(z)))
else:
sample_idex = np.random.choice(index_range,size=len(z))
z = [z[x] for x in sample_idex]
z = torch.stack(z).to(device)
mean = torch.mean(z)
var = torch.var(z,dim=0)
counts = 0
iteration = 0
while counts < num_gen and iteration < 200:
iteration += 1
z_noise = std*torch.randn(num_gen,args.code_len).to(device)
z_mean = mean.repeat(num_gen,1)
z = z_mean + z_noise
X = model_generate.module.Decoder(z)
mu,logVar,p,_ = model_recognize(X)
p = np.argmax(p.cpu().detach().numpy(),1)
for j in range(num_gen):
if p[j] == major_classes[i]:
counts += 1
Generate_Latent.append(z[j])
print(z_noise[j])
y.append(major_classes[i])
Generate_Latent = torch.stack(Generate_Latent).to(device)
X = model_generate.module.Decoder(Generate_Latent).detach()
save_decoded_image(args,X.cpu().data, name='./Generated_'+ args.dataset + '/X{}.png'.format(idx))
self.X = X
self.y = y
def __len__(self):
return len(self.y)
def __getitem__(self, idx):
return self.X[idx],self.y[idx]
class LocalGenerate(object):
def __init__(self, args, dataset=None, idxs=None,device = None):
self.args = args
self.loss_func = nn.CrossEntropyLoss()
self.selected_clients = []
self.device = device
data_len = len(idxs)
self.ldr_train = DataLoader(DatasetSplit(dataset, idxs), batch_size=64, shuffle=True)
def generate(self):
images_means, labels_means = torch.Tensor().to(self.device), torch.Tensor().to(self.device)
for batch_idx, (images, labels) in enumerate(self.ldr_train):
images, labels = images.to(self.device), labels.to(self.device)
images_mean = torch.mean(images, dim=0).unsqueeze(0)
labels_mean = torch.mean(F.one_hot(labels, num_classes=10).float(), dim=0).unsqueeze(0)
images_means = torch.cat([images_means, images_mean], dim=0)
labels_means = torch.cat([labels_means, labels_mean], dim=0)
return images_means, labels_means
class DatasetSplit(Dataset):
def __init__(self, dataset, idxs):
self.dataset = dataset
self.idxs = list(idxs)
def __len__(self):
return len(self.idxs)
def __getitem__(self, item):
image, label = self.dataset[self.idxs[item]]
return image, label