Skip to content

Latest commit

 

History

History
35 lines (28 loc) · 1.44 KB

README.md

File metadata and controls

35 lines (28 loc) · 1.44 KB

What's in this repository?

This repository contains simple usage examples for basic machine learning libraries. These notebooks are tested in Colab.

XGB_classification_titanic.ipynb

  • A supervised ML classification example using XGBoost (GPU), sklearn (pipeline & auto hyperparameter tuning) & SMOTE on the titanic dataset. (Custom feature extraction/engineering & SMOTE excluded from pipeline.)

imblearn_XGB_titanic.ipynb

  • A supervised ML classification example using XGBoost (GPU) & sklearn (auto-hyperparameter tuning & custom transformer) with imblearn pipeline & SMOTE on the titanic dataset. (Full pipeline)

XGB_regression_kc_house.ipynb

  • A supervised ML regression example using XGBoost (GPU) & sklearn (pipeline & auto hyperparameter tuning) on the King county house sales dataset.

cust_trans_XGB_kc_house.ipynb

  • A supervised ML regression example using XGBoost (GPU) & sklearn (pipeline, custom transform & auto hyperparameter tuning) on the King county house sales dataset. (Full pipeline)

clustering_iris.ipynb

  • An unsupervised ML clustering example using sklearn on the iris dataset.

CNN_classification_MNIST.ipynb

  • A supervised ML classification example using CNN from Keras & Kerastuner (auto hyperparameter tuning) on the MNIST dataset.