-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDP_Part_2.java
170 lines (141 loc) · 4.96 KB
/
DP_Part_2.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
package Dynamic_Programming;
import java.sql.Array;
import java.util.Arrays;
public class DP_Part_2 {
// 0-1 Knapsack
// Recursion
public static int knapSackRec(int[] val, int[] wt, int W, int n){
//Base case
if (n==0 || W==0) return 0;
//Valid choice
if (wt[n-1] <= W){
// Include
int taken = val[n-1] + knapSackRec(val, wt, W-wt[n-1], n-1);
// Excluded
int notTaken = knapSackRec(val, wt, W, n-1);
// Max of both
return Math.max(taken, notTaken);
}else /*Not valid*/{
return knapSackRec(val, wt, W, n-1);
}
}
// DP : Memoization
public static int knapSackMemo(int[] val, int[] wt, int W, int n, int[][] dp){
if (W == 0 || n == 0) return 0;
// reuse
if (dp[n][W] != -1) return dp[n][W];
//Valid
if (wt[n-1] <= W){
//include and add value
int taken = val[n-1] + knapSackMemo(val, wt, W-wt[n-1], n-1, dp);
//exclude
int notTaken = knapSackMemo(val, wt, W, n-1, dp);
//store
dp[n][W] = Math.max(taken, notTaken);
return dp[n][W];
}else{
// Not valid
//store
dp[n][W] = knapSackMemo(val, wt, W, n-1, dp);
return dp[n][W];
}
}
//DP : Tabulation
public static int knapSackTab(int[] val, int[] wt, int W){
int n = val.length;
int[][] dp = new int[n+1][W+1];
// make zeroth row and column zero
for (int i=0; i<dp.length; i++){
dp[i][0] = 0;
}
for (int i=0; i<dp[0].length; i++){
dp[0][i] = 0;
}
//n - loop
for (int i=1; i<dp.length; i++){
// W - loop
for (int j=1; j<dp[0].length; j++){
int v = val[i-1];
int w = wt[i-1];
//valid
if (w <= j){
dp[i][j] = Math.max(v + dp[i-1][j-w], dp[i-1][j]);
}
/*invalid*/ else{
dp[i][j] = dp[i-1][j];
}
}
}
return dp[n][W];
}
// Target Sum Subset
public static boolean targetSum(int[] arr, int sum){
int n = arr.length;
boolean[][] dp = new boolean[n+1][sum+1];
// when sum zero then always true
for (int i=0; i<dp.length; i++){
dp[i][0] = true;
}
// same like 01 Knapsack
for (int i=1; i<dp.length; i++){
for (int j=1; j<dp[0].length; j++){
int val = arr[i-1];
//include
if (val <= j && dp[i-1][j-val] == true){
dp[i][j] = true;
}else if(dp[i-1][j] == true){
dp[i][j] = true;
}
}
}
return dp[n][sum];
}
// Unbounded knapsack : valid + include : i not i-1
public static int unboundedKnapSacak(int[] val, int[] wt, int W){
int n = val.length;
int[][] dp = new int[n+1][W+1];
// initialize 0th indices
for (int i=0; i<dp.length; i++){
Arrays.fill(dp[i], 0);
}
//n+1 loop
for (int i=1; i< dp.length; i++){
// W+1 loop
for (int j=1; j<dp[0].length; j++){
//valid
int value = val[i-1];
int weight = wt[i-1];
if (weight <= j){
//valid + include
int taken = value + dp[i][j-weight];
//valid + exclude
int notTaken = dp[i-1][j];
dp[i][j] = Math.max(taken, notTaken);
}else{
//not valid + exlude
dp[i][j] = dp[i-1][j];
}
}
}
return dp[n][W];
}
public static void main(String[] args) {
int[] val = {15, 14, 10, 45, 30};
int[] wt = {2, 5, 1, 3, 4};
int capacity = 7;
int n = val.length;
int ans = knapSackRec(val, wt, capacity, n);
System.out.println("O(2^n) -> Recursion :" + ans);
int[][] dp = new int[n+1][capacity+1];
for (int i=0; i<dp.length; i++){
Arrays.fill(dp[i], -1);
}
int dpAns = knapSackMemo(val, wt, capacity, n, dp);
System.out.println("O(n*W) -> DP(memoization) : " + dpAns);
System.out.println("O(n*W) -> DP(Tabulation) : " + knapSackTab(val, wt, capacity));
int[] arr = {4, 2, 7, 1, 3};
int sum = 10;
System.out.println("\nTarget Sum problem\nO(n*targetSum) -> DP(Tabulation) : " + targetSum(arr, sum));
System.out.println("\nUnbounded Knapsack\nO(n*W) -> DP(Tabulation) : " + unboundedKnapSacak(val, wt, capacity));
}
}