-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathhparams.py
102 lines (85 loc) · 3.01 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
def create_hparams():
"""Create model hyperparameters. Parse nondefault from given string."""
hparams = dict(
################################
# Experiment Parameters #
################################
epochs=500,
iters_per_checkpoint=1000,
seed=1234,
dynamic_loss_scaling=True,
fp16_run=False,
distributed_run=False,
dist_backend="nccl",
dist_url="tcp://localhost:54321",
cudnn_enabled=True,
cudnn_benchmark=False,
ignore_layers=['embedding.weight'],
################################
# Data Parameters #
################################
load_mel_from_disk=False,
training_files='filelists/ljs_audio_text_train_filelist.txt',
validation_files='filelists/ljs_audio_text_val_filelist.txt',
text_cleaners=['english_cleaners'],
################################
# Audio Parameters #
################################
# max_wav_value=32768.0,
sampling_rate=16000, #22050,
filter_length=1024,
hop_length=256,
win_length=1024,
n_mel_channels=80,
mel_fmin=0.0,
mel_fmax=8000.0,
################################
# Model Parameters #
################################
# n_symbols=len(symbols),
# symbols_embedding_dim=512,
# Encoder parameters
num_init_filters= 24,
encoder_kernel_size = 5,
encoder_n_convolutions=5,
encoder_embedding_dim=1024,
# Decoder parameters
n_frames_per_step=1, # currently only 1 is supported
decoder_rnn_dim=1024,
prenet_dim=256,
max_decoder_steps=300,
gate_threshold=0.5,
p_attention_dropout=0.1,
p_decoder_dropout=0.1,
# Attention parameters
attention_rnn_dim=1024,
attention_dim=128,
# Location Layer parameters
attention_location_n_filters=32,
attention_location_kernel_size=31,
# Mel-post processing network parameters
postnet_embedding_dim=512,
postnet_kernel_size=5,
postnet_n_convolutions=5,
################################
# Optimization Hyperparameters #
################################
use_saved_learning_rate=False,
learning_rate=1e-4,
weight_decay=1e-6,
grad_clip_thresh=1.0,
batch_size=64,
mask_padding=True, # set model's padded outputs to padded values
teacher_forcing_probability=0.5,
)
class HParams:
def __init__(self, dictionary):
for k, v in dictionary.items():
setattr(self, k, v)
hparams = HParams(hparams)
# if hparams_string:
# tf.logging.info('Parsing command line hparams: %s', hparams_string)
# hparams.parse(hparams_string)
# if verbose:
# tf.logging.info('Final parsed hparams: %s', hparams.values())
return hparams