-
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathpoint_cloud_filtering.py
34 lines (25 loc) · 1.15 KB
/
point_cloud_filtering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import open3d as o3d
import numpy as np
if __name__ == '__main__':
# Read point cloud:
pcd = o3d.io.read_point_cloud("../data/depth_2_pcd.ply")
# Down sampling to reduce the running time:
pcd = pcd.voxel_down_sample(voxel_size=0.02)
# Radius outlier removal:
pcd_rad, ind_rad = pcd.remove_radius_outlier(nb_points=16, radius=0.05)
outlier_rad_pcd = pcd.select_by_index(ind_rad, invert=True)
outlier_rad_pcd.paint_uniform_color([1., 0., 1.])
# Statistical outlier removal:
pcd_stat, ind_stat = pcd.remove_statistical_outlier(nb_neighbors=20,
std_ratio=2.0)
outlier_stat_pcd = pcd.select_by_index(ind_stat, invert=True)
outlier_stat_pcd.paint_uniform_color([0., 0., 1.])
# Translate to visualize:
points = np.asarray(pcd_stat.points)
points += [3, 0, 0]
pcd_stat.points = o3d.utility.Vector3dVector(points)
points = np.asarray(outlier_stat_pcd.points)
points += [3, 0, 0]
outlier_stat_pcd.points = o3d.utility.Vector3dVector(points)
# Display:
o3d.visualization.draw_geometries([pcd_stat, pcd_rad, outlier_stat_pcd, outlier_rad_pcd])