-
Notifications
You must be signed in to change notification settings - Fork 1
/
test-Lhs.py
203 lines (158 loc) · 6.65 KB
/
test-Lhs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import pickle
import glob
from torch.utils.data.dataloader import DataLoader
import torch.distributions.multivariate_normal as torchdist
from pyDOE import lhs
from utils import *
from metrics import *
from model import TrajectoryModel
import copy
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def box_muller_transform(x: torch.FloatTensor):
r"""Box-Muller transform"""
shape = x.shape
x = x.view(shape[:-1] + (-1, 2))
z = torch.zeros_like(x, device=x.device)
z[..., 0] = (-2 * x[..., 0].log()).sqrt() * (2 * np.pi * x[..., 1]).cos()
z[..., 1] = (-2 * x[..., 0].log()).sqrt() * (2 * np.pi * x[..., 1]).sin()
return z.view(shape)
def compute_batch_metric(pred, gt):
"""Get ADE, FDE, TCC scores for each pedestrian"""
# Calculate ADEs and FDEs
temp = (pred - gt).norm(p=2, dim=-1)
ADEs = temp.mean(dim=1).min(dim=0)[0]
FDEs = temp[:, -1, :].min(dim=0)[0]
# Calculate TCCs
pred_best = pred[temp[:, -1, :].argmin(dim=0), :, range(pred.size(2)), :]
pred_gt_stack = torch.stack([pred_best, gt.permute(1, 0, 2)], dim=0)
pred_gt_stack = pred_gt_stack.permute(3, 1, 0, 2)
covariance = pred_gt_stack - pred_gt_stack.mean(dim=-1, keepdim=True)
factor = 1 / (covariance.shape[-1] - 1)
covariance = factor * covariance @ covariance.transpose(-1, -2)
variance = covariance.diagonal(offset=0, dim1=-2, dim2=-1)
stddev = variance.sqrt()
corrcoef = covariance / stddev.unsqueeze(-1) / stddev.unsqueeze(-2)
corrcoef = corrcoef.clamp(-1, 1)
corrcoef[torch.isnan(corrcoef)] = 0
TCCs = corrcoef[:, :, 0, 1].mean(dim=0)
return ADEs, FDEs, TCCs
def test(model, loader_test, KSTEPS=20):
model.eval()
ade_all, fde_all, tcc_all = [], [], []
step =0
pic_cnt = 0
for batch in loader_test:
step+=1
#Get data
batch = [tensor.cuda() for tensor in batch]
obs_traj, pred_traj_gt, obs_traj_rel, pred_traj_gt_rel, non_linear_ped, \
loss_mask, V_obs, V_tr = batch
identity_spatial = torch.ones((V_obs.shape[1], V_obs.shape[2], V_obs.shape[2])) * torch.eye(
V_obs.shape[2])
identity_temporal = torch.ones((V_obs.shape[2], V_obs.shape[1], V_obs.shape[1])) * torch.eye(
V_obs.shape[1])
identity_spatial = identity_spatial.cuda()
identity_temporal = identity_temporal.cuda()
identity = [identity_spatial, identity_temporal]
V_pred = model(V_obs, identity) # A_obs <8, #, #>
V_pred = V_pred.squeeze()
V_tr = V_tr.squeeze()
num_of_objs = obs_traj_rel.shape[1]
V_pred, V_tr = V_pred[:, :num_of_objs, :], V_tr[:, :num_of_objs, :]
#
# #For now I have my bi-variate parameters
# #normx = V_pred[:,:,0:1]
# #normy = V_pred[:,:,1:2]
sx = torch.exp(V_pred[:,:,2]) #sx
sy = torch.exp(V_pred[:,:,3]) #sy
corr = torch.tanh(V_pred[:,:,4]) #corr
#
cov = torch.zeros(V_pred.shape[0],V_pred.shape[1],2,2).cuda()
cov[:,:,0,0]= sx*sx
cov[:,:,0,1]= corr*sx*sy
cov[:,:,1,0]= corr*sx*sy
cov[:,:,1,1]= sy*sy
mean = V_pred[:,:,0:2]
V_obs_traj = obs_traj.permute(0, 3, 1, 2).squeeze(dim=0)
V_pred_traj_gt = pred_traj_gt.permute(0, 3, 1, 2).squeeze(dim=0)
ade_stack, fde_stack, tcc_stack = [], [], []
#### Latin hypercube sampling ####
lhs_sample = torch.tensor(lhs(2, samples=20))
qr_seq = torch.stack([box_muller_transform(lhs_sample) for _ in range(mean.size(0))], dim=1).unsqueeze(
dim=2).type_as(mean)
sample = mean + (torch.linalg.cholesky(cov) @ qr_seq.unsqueeze(dim=-1)).squeeze(dim=-1)
# Evaluate trajectories
V_absl = sample.cumsum(dim=1) + V_obs_traj[[-1], :, :]
ADEs, FDEs, TCCs = compute_batch_metric(V_absl, V_pred_traj_gt)
ade_stack.append(ADEs.detach().cpu().numpy())
fde_stack.append(FDEs.detach().cpu().numpy())
tcc_stack.append(TCCs.detach().cpu().numpy())
ade_all.append(np.array(ade_stack))
fde_all.append(np.array(fde_stack))
tcc_all.append(np.array(tcc_stack))
ade_all = np.concatenate(ade_all, axis=1)
fde_all = np.concatenate(fde_all, axis=1)
tcc_all = np.concatenate(tcc_all, axis=1)
mean_ade, mean_fde, mean_tcc = ade_all.mean(axis=0).mean(), fde_all.mean(axis=0).mean(), tcc_all.mean(axis=0).mean()
return mean_ade, mean_fde, mean_tcc
def main():
KSTEPS = 20
ade_ls = []
fde_ls = []
print('Number of samples:', KSTEPS)
print("*" * 50)
root_ = './checkpoints/'
dataset = ['STIGCN/eth',
'STIGCN/hotel',
'STIGCN/univ',
'STIGCN/zara1',
'STIGCN/zara2']
paths = list(map(lambda x: root_ + x, dataset))
for feta in range(len(paths)):
path = paths[feta]
exps = glob.glob(path)
print('Model being tested are:', exps)
for exp_path in exps:
print("*" * 50)
print("Evaluating model:", exp_path)
model_path = exp_path + '/val_best.pth'
args_path = exp_path + '/args.pkl'
with open(args_path, 'rb') as f:
args = pickle.load(f)
# Data prep
obs_seq_len = args.obs_len
pred_seq_len = args.pred_len
data_set = './dataset/' + args.dataset + '/'
dset_test = TrajectoryDataset(
data_set + 'test/',
obs_len=obs_seq_len,
pred_len=pred_seq_len,
skip=1)
loader_test = DataLoader(
dset_test,
batch_size=1, # This is irrelative to the args batch size parameter
shuffle=False,
num_workers=1)
model = TrajectoryModel(embedding_dims=64, number_gcn_layers=1, dropout=0,
obs_len=8, pred_len=12, n_tcn=5, out_dims=5).cuda()
model.load_state_dict(torch.load(model_path))
num_params = sum(p.numel() for p in model.parameters())
print(f"Number of parameters: {num_params}")
ad_ = 999999
fd_ = 999999
print("Testing ....")
ade_,fde_,raw_data_dict = test(model, loader_test)
ade_ = min(ade_, ad_)
fde_ = min(fde_, fd_)
ade_ls.append(ade_)
fde_ls.append(fde_)
print("ade:", ade_, " fde:", fde_)
num_params = sum(p.numel() for p in model.parameters())
print(f"Number of parameters: {num_params}")
print("*" * 50)
print("Avg ADE:", sum(ade_ls) / 5)
print("Avg FDE:", sum(fde_ls) / 5)
if __name__ == '__main__':
main()