-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels_CC.py
329 lines (269 loc) · 15 KB
/
models_CC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import torch
from torch import nn
import numpy as np
from torch.nn.init import xavier_uniform_
from typing import Optional
import math
import clip
from torch.nn.modules.container import ModuleList
import copy
# from load_clsmodel import device
from load_clsmodel import Pretrained_model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def _get_clones(module, N):
return ModuleList([copy.deepcopy(module) for i in range(N)])
class CrossTransformer(nn.Module):
"""
Cross Transformer layer
"""
def __init__(self, dropout=0.5, d_model=768, n_head=4):
"""
:param dropout: dropout rate
:param d_model: dimension of hidden state
:param n_head: number of heads in multi head attention
"""
super(CrossTransformer, self).__init__()
self.attention = nn.MultiheadAttention(d_model, n_head, dropout=dropout)
self.attention2 = nn.MultiheadAttention(d_model, n_head, dropout=dropout)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = nn.GELU()
self.linear1 = nn.Linear(d_model, d_model * 4)
self.linear2 = nn.Linear(d_model * 4, d_model)
def forward(self, input1, input2):
batch_size = input1.size()[1]
# 改进dif_as_kv
dif = input2 - input1
output_1 = self.cross(input1, dif) # (Q,K,V)
output_2 = self.cross(input2, dif) # (Q,K,V)
return output_1, output_2
def cross(self, input, dif):
# 第一种 RSICCformer_D (diff_as_kv)
attn_output, attn_weight = self.attention(input, dif, dif) # (Q,K,V)
output = input + self.dropout1(attn_output)
output = self.norm1(output)
ff_output = self.linear2(self.dropout2(self.activation(self.linear1(output))))
output = output + self.dropout3(ff_output)
output = self.norm2(output)
return output
class Image_Encoder(nn.Module):
def __init__(self, clip_model_type, len_change_emmbed, clip_feat_dim, h=7, w=7, gpt_dim=768, n_head=8, n_layers=3, prompt_len=10, uni_prompt_1_len=0):
super(Image_Encoder, self).__init__()
self.clip_model, preprocess = clip.load(clip_model_type, device=device, jit=False)
self.clip_model = self.clip_model.to(dtype=torch.float32)
self.clip_model_cls, preprocess_cls = clip.load('ViT-B/32', device=device, jit=False)
self.prompt_len = prompt_len
self.uni_prompt_1_len = uni_prompt_1_len
d_model = gpt_dim
self.d_model = gpt_dim
self.clip_feat_dim = clip_feat_dim
self.n_layers = n_layers
print("CC_Transformer_encoderlayers=", n_layers)
"describle the content"
self.projection = nn.Linear(clip_feat_dim, d_model)
self.concat_projection = nn.Linear(2*d_model, d_model)
self.flag_projection = nn.Linear(d_model, 2)
# FIXME:layers =
encoder_self_layer = nn.TransformerEncoderLayer(d_model, n_head, dim_feedforward=int(4 * d_model))
self.transformer_encoder = nn.TransformerEncoder(encoder_self_layer, num_layers=self.n_layers // 10 % 10)
# FIXME:layers =
encoder_self_layer_2feat = nn.TransformerEncoderLayer(2 * d_model, n_head, dim_feedforward=int(8 * d_model))
self.trans_encoder_2feat = nn.TransformerEncoder(encoder_self_layer_2feat,
num_layers=(self.n_layers % 10))
# a transformer for trying:
self.transformer = nn.ModuleList([CrossTransformer(dropout=0.2, d_model=d_model, n_head=n_head) for i in range(3)])
# position_embedding
self.w_embedding = nn.Embedding(w, int(d_model / 2))
self.h_embedding = nn.Embedding(h, int(d_model / 2))
self.temporal_embedding = nn.Embedding(2, int(2*d_model))
# cls_token
scale = d_model ** -0.5
self.class_embedding_A = nn.Parameter(scale * torch.randn(1, d_model))
self.class_embedding_B = nn.Parameter(scale * torch.randn(1, d_model))
# prompt
self.prompt = nn.Parameter(scale * torch.randn(self.prompt_len, d_model), requires_grad=True)
# self.change_proto
self.change_proto = nn.Parameter(scale * torch.randn(len_change_emmbed, d_model), requires_grad=True)
self.nochange_proto = nn.Parameter(scale * torch.randn(len_change_emmbed, d_model), requires_grad=True)
#
self.logit_scale = nn.Parameter(scale * torch.ones([]) * np.log(1 / 0.07))
self.prefix_A = nn.Parameter(scale * torch.randn(1, 2*d_model), requires_grad=True)
self.prefix_B = nn.Parameter(scale * torch.randn(1, 2*d_model), requires_grad=True)
gpt2_type = 'gpt2'
# gpt2_type = r'C:\Users\lcy\.cache\huggingface\hub\models--gpt2\snapshots\e7da7f221d5bf496a48136c0cd264e630fe9fcc8'
self.tokenizer = GPT2Tokenizer.from_pretrained(gpt2_type)
self.gpt_encoderimg = GPT2LMHeadModel.from_pretrained(gpt2_type)
# cls_model
self.classification_module = Pretrained_model(decoder_mode='gpt2', finetune_gpt2=False,
img_feature_h=7,
img_feature_w=7)
model_path = './checkpoints/classification_model/cls_model.pth.tar'
checkpoint = torch.load(model_path, map_location=device)
model = checkpoint['model_state_dict()']
self.classification_module.load_state_dict(model)
self.classification_module.eval()
def position_embedding_2D_func(self, img_feat_A, img_feat_B):
batch = img_feat_B.shape[0]
Len_feat = img_feat_B.shape[1]
h = int(math.sqrt(Len_feat))
w = h
pos_w = torch.arange(w, device=device).to(device)
pos_h = torch.arange(h, device=device).to(device)
embed_w = self.w_embedding(pos_w)
embed_h = self.h_embedding(pos_h)
position_embedding = torch.cat([embed_w.unsqueeze(0).repeat(h, 1, 1),
embed_h.unsqueeze(1).repeat(1, w, 1)],
dim=-1)
position_embedding = position_embedding.unsqueeze(0).repeat(batch, 1, 1, 1) # (batch, h, w, d_model)
position_embedding = position_embedding.view(batch, -1, self.d_model)
img_feat_A = img_feat_A + position_embedding # NLD
img_feat_B = img_feat_B + position_embedding # NLD
return img_feat_A, img_feat_B
def temporal_embedding_func(self, img_refine_A, img_refine_B):
# # temporal embedding
batch = img_refine_B.shape[0]
Len_feat = img_refine_B.shape[1]
temporal = torch.arange(2, device=device).to(device)
temporal_embed = self.temporal_embedding(temporal)
temporal_embedding = temporal_embed.unsqueeze(1).repeat(1, Len_feat, 1) # (2,L,d_model)
temporal_embedding = temporal_embedding.unsqueeze(0).repeat(batch, 1, 1, 1) # (batch, 2,L,d_model)
img_refine_A = img_refine_A + temporal_embedding[:, 0, ...] # NLD
img_refine_B = img_refine_B + temporal_embedding[:, 1, ...]
return img_refine_A, img_refine_B # NLD
def changeflag2prompt(self, changeflag):
batch = changeflag.shape[0]
changefilter = changeflag.unsqueeze(-1).unsqueeze(-1)
nochangefilter = 1 - changefilter
change_proto = self.change_proto.unsqueeze(0).expand(batch, *self.change_proto.shape)
nochange_proto = self.nochange_proto.unsqueeze(0).expand(batch, *self.change_proto.shape)
change_proto_prompt = change_proto * changefilter + nochange_proto * nochangefilter
return change_proto_prompt
def Siamese_bridge_net(self, class_embedding, img_feat):
conc_A = torch.cat(
[class_embedding.unsqueeze(0).expand(img_feat.shape[0], *class_embedding.shape),
img_feat], dim=1)
conc_A = self.transformer_encoder(conc_A.permute(1, 0, 2)).permute(1, 0, 2) # NLD
cls_A = conc_A[:, 0, :]
img_refine = conc_A[:, 1:, :] # NLD
return cls_A, img_refine
def forward(self, changeflag, ori_img):
img_A = ori_img[:, 0, ...]
img_B = ori_img[:, 1, ...]
clip_emb_A, img_feat_A = self.clip_model.encode_image(img_A)
clip_emb_B, img_feat_B = self.clip_model.encode_image(img_B)
clip_emb_A, img_feat_A = clip_emb_A.to(dtype=torch.float32), img_feat_A.to(dtype=torch.float32)
clip_emb_B, img_feat_B = clip_emb_B.to(dtype=torch.float32), img_feat_B.to(dtype=torch.float32)
featuremap = torch.cat([img_feat_A.unsqueeze(1), img_feat_B.unsqueeze(1)], dim=1)
# GT changeflag or preflag for training
preflag = self.classification_module.Classifier(0, featuremap)
# changeflag = torch.argmax(preflag, 1)
if self.clip_feat_dim != self.d_model:
img_feat_A = self.projection(img_feat_A) # (N,L,768)
img_feat_B = self.projection(img_feat_B)
batch = img_feat_B.shape[0]
Len_feat = img_feat_B.shape[1]
# 2D image position_embedding
img_feat_A, img_feat_B = self.position_embedding_2D_func(img_feat_A, img_feat_B) # NLD
# bridge Network
cls_A, img_refine_A = self.Siamese_bridge_net(self.class_embedding_A, img_feat_A)
cls_B, img_refine_B = self.Siamese_bridge_net(self.class_embedding_B, img_feat_B)
# img_refine_A, img_refine_B = img_feat_A, img_feat_B
dif = img_refine_B - img_refine_A
img_refine_A = torch.cat([img_refine_A, dif], dim=-1)
img_refine_B = torch.cat([img_refine_B, dif], dim=-1)
img_refine_A = self.trans_encoder_2feat(img_refine_A.permute(1, 0, 2)).permute(1, 0, 2)
img_refine_B = self.trans_encoder_2feat(img_refine_B.permute(1, 0, 2)).permute(1, 0, 2)
# img_refine_A = self.concat_projection(img_refine_A)
# img_refine_B = self.concat_projection(img_refine_B)
# temporal encoding
img_refine_A, img_refine_B = self.temporal_embedding_func(img_refine_A, img_refine_B)
img_refine_A = self.concat_projection(img_refine_A)
img_refine_B = self.concat_projection(img_refine_B)
fusion_feat = torch.cat([img_refine_A, img_refine_B], dim=1) # NLD
# 1\\Auto Generate prompt
# project two changeflag to different prompt
change_proto_prompt = self.changeflag2prompt(changeflag)
# unified prompt for captioning
prompt = self.prompt.unsqueeze(0).expand(batch, *self.prompt.shape)
uni_prompt_1 = prompt[:, :self.uni_prompt_1_len, ...]
uni_prompt_2 = prompt[:, self.uni_prompt_1_len:, ...]
# all prompt
output = torch.cat([fusion_feat, uni_prompt_1, change_proto_prompt, uni_prompt_2], dim=1) # NLD
# 2\\hand craft prompt
# hand_craft_prompt = torch.tensor(self.tokenizer.encode('Describe differences between images:'), dtype=torch.int64).to(device)
# hand_craft_prompt = self.gpt_encoderimg.transformer.wte(
# hand_craft_prompt.unsqueeze(0).repeat(batch, 1)) # N,3,D
#
# output = torch.cat([fusion_feat, hand_craft_prompt], dim=1)
# return Sim_cls_AB, pre_flag, output
return 0, preflag, output
class LEVIR_CC_CaptionModel(nn.Module):
def __init__(self, encoder_mode, decoder_mode, prompt_len, uni_prompt_1_len, len_change_emmbed,
img_feature_dim, img_feature_h, img_feature_w, num_layers):
super(LEVIR_CC_CaptionModel, self).__init__()
self.decoder_mode = decoder_mode
self.img_feature_h = img_feature_h
self.img_feature_w = img_feature_w
if self.decoder_mode == 'gpt2':
gpt2_type = 'gpt2'
# gpt2_type = r'C:\Users\lcy\.cache\huggingface\hub\models--gpt2\snapshots\e7da7f221d5bf496a48136c0cd264e630fe9fcc8'
self.gpt_decoder = GPT2LMHeadModel.from_pretrained(gpt2_type) #(lm_head): Linear(in_features=768, out_features=50257, bias=False)
self.gpt_embedding_size = self.gpt_decoder.transformer.wte.weight.shape[1]
self.ori_voc_size = self.gpt_decoder.lm_head.out_features
self.lm_head_nochange = nn.Linear(self.gpt_embedding_size, self.ori_voc_size)
self.lm_head_change = nn.Linear(self.gpt_embedding_size, self.ori_voc_size)
self.gpt_decoder.lm_head = nn.Sequential()
self.pred_flag_projection = nn.Linear(self.gpt_embedding_size, 2)
self.Image_Encoder = Image_Encoder(clip_model_type=encoder_mode,
len_change_emmbed=len_change_emmbed, clip_feat_dim=img_feature_dim,
h=img_feature_h, w=img_feature_w,
gpt_dim=self.gpt_embedding_size,
n_layers=num_layers, prompt_len=prompt_len, uni_prompt_1_len=uni_prompt_1_len)
d_model = self.gpt_embedding_size
encoder_self_layer = nn.TransformerEncoderLayer(d_model, 8, dim_feedforward=int(2 * d_model))
self.text_encoder = nn.TransformerEncoder(encoder_self_layer, num_layers=3)
self.pos_emb = nn.Embedding(51, int(d_model))
self.text_cls = nn.Parameter(torch.randn(1, d_model), requires_grad=True)
self.gpt_decoder.eval()
self.Image_Encoder.clip_model.eval()
self.Image_Encoder.classification_module.eval()
def dual_branch_func(self, changeflag, out):
output = self.lm_head_change(out)
return output, 0
def forward(self, tokens, changeflag, ori_img, mask: Optional[torch.Tensor] = None):
Sim_cls_AB, pre_flag, prefix_projections = self.Image_Encoder(changeflag, ori_img) #.view(-1, self.prefix_length, self.gpt_embedding_size)
embedding_text = self.gpt_decoder.transformer.wte(tokens) # -> NLD
loss = 0
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
if self.decoder_mode == 'gpt2':
out = self.gpt_decoder(inputs_embeds=embedding_cat, attention_mask=mask) #1
# out = self.gpt_decoder(inputs_embeds=embedding_cat) #
out = out.logits
output, pre = self.dual_branch_func(changeflag, out)
return loss, pre_flag, output
def set_finetune(self, fine_tune=False):
"""
Allow or prevent the computation of gradients for convolutional blocks 2 through 4 of the encoder.
:param fine_tune: Allow?
"""
# encoder
for p in self.Image_Encoder.clip_model.parameters():
p.requires_grad = False
for p in self.Image_Encoder.classification_module.parameters():
p.requires_grad = False
# decoder
for p in self.gpt_decoder.parameters():
p.requires_grad = fine_tune
for p in self.gpt_decoder.lm_head.parameters():
p.requires_grad = True
def train(self, mode: bool = True):
super(LEVIR_CC_CaptionModel, self).train(mode)
self.gpt_decoder.eval()
self.Image_Encoder.clip_model.eval()
self.Image_Encoder.classification_module.eval()
return self