-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtransformer4.py
406 lines (356 loc) · 20.9 KB
/
transformer4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import torch
from torch import nn
import numpy as np
from scipy.stats import norm
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
channel_number = 512
num_pixels =196
class PoswiseFeedForwardNet2(nn.Module):
def __init__(self, embed_dim, d_ff, dropout):
super(PoswiseFeedForwardNet2, self).__init__()
"""
Two fc layers can also be described by two cnn with kernel_size=1.
"""
self.conv1 = nn.Conv1d(in_channels=2*embed_dim, out_channels=d_ff, kernel_size=1).to(device)
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=embed_dim, kernel_size=1).to(device)
self.dropout = nn.Dropout(p=dropout)
self.embed_dim = embed_dim
def forward(self, inputs_x,inputs_y):
"""
encoder: inputs: [batch_size, len_q=196, embed_dim=2048]
decoder: inputs: [batch_size, max_len=52, embed_dim=512]
"""
residual = inputs_x + inputs_y
output = nn.Sigmoid()(self.conv1(torch.cat([inputs_x,inputs_y],dim=2).transpose(1, 2)))
output = self.conv2(output).transpose(1, 2)
output = self.dropout(output)
return nn.LayerNorm(self.embed_dim).to(device)(output + residual)
class ScaledDotProductAttention(nn.Module):
def __init__(self, QKVdim):
super(ScaledDotProductAttention, self).__init__()
self.QKVdim = QKVdim
def forward(self, Q, K, V, attn_mask):
"""
:param Q: [batch_size, n_heads, -1(len_q), QKVdim]
:param K, V: [batch_size, n_heads, -1(len_k=len_v), QKVdim]
:param attn_mask: [batch_size, n_heads, len_q, len_k]
"""
# scores: [batch_size, n_heads, len_q, len_k]
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(self.QKVdim)
# Fills elements of self tensor with value where mask is True.
scores.to(device).masked_fill_(attn_mask, -1e9)
attn = nn.Softmax(dim=-1)(scores) # [batch_size, n_heads, len_q, len_k]
context = torch.matmul(attn, V).to(device) # [batch_size, n_heads, len_q, QKVdim]
return context, attn
class Multi_Head_Attention(nn.Module):
def __init__(self, Q_dim, K_dim, QKVdim, n_heads=8, dropout=0.1):
super(Multi_Head_Attention, self).__init__()
self.W_Q = nn.Linear(Q_dim, QKVdim * n_heads).to(device)
self.W_K = nn.Linear(K_dim, QKVdim * n_heads).to(device)
self.W_V = nn.Linear(K_dim, QKVdim * n_heads).to(device)
self.n_heads = n_heads
self.QKVdim = QKVdim
self.embed_dim = Q_dim
self.dropout = nn.Dropout(p=dropout)
self.W_O = nn.Linear(self.n_heads * self.QKVdim, self.embed_dim).to(device)
def forward(self, Q, K, V, attn_mask):
"""
In self-encoder attention:
Q = K = V: [batch_size, num_pixels=196, encoder_dim=2048]
attn_mask: [batch_size, len_q=196, len_k=196]
In self-decoder attention:
Q = K = V: [batch_size, max_len=52, embed_dim=512]
attn_mask: [batch_size, len_q=52, len_k=52]
encoder-decoder attention:
Q: [batch_size, 52, 512] from decoder
K, V: [batch_size, 196, 2048] from encoder
attn_mask: [batch_size, len_q=52, len_k=196]
return _, attn: [batch_size, n_heads, len_q, len_k]
"""
residual, batch_size = Q, Q.size(0)
# q_s: [batch_size, n_heads=8, len_q, QKVdim] k_s/v_s: [batch_size, n_heads=8, len_k, QKVdim]
q_s = self.W_Q(Q).view(batch_size, -1, self.n_heads, self.QKVdim).transpose(1, 2)
k_s = self.W_K(K).view(batch_size, -1, self.n_heads, self.QKVdim).transpose(1, 2)
v_s = self.W_V(V).view(batch_size, -1, self.n_heads, self.QKVdim).transpose(1, 2)
# attn_mask: [batch_size, self.n_heads, len_q, len_k]
attn_mask = attn_mask.unsqueeze(1).repeat(1, self.n_heads, 1, 1)
# attn: [batch_size, n_heads, len_q, len_k]
# context: [batch_size, n_heads, len_q, QKVdim]
context, attn = ScaledDotProductAttention(self.QKVdim)(q_s, k_s, v_s, attn_mask)
# context: [batch_size, n_heads, len_q, QKVdim] -> [batch_size, len_q, n_heads * QKVdim]
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.n_heads * self.QKVdim).to(device)
# output: [batch_size, len_q, embed_dim]
output = self.W_O(context)
output = self.dropout(output)
return nn.LayerNorm(self.embed_dim).to(device)(output + residual), attn
class PoswiseFeedForwardNet(nn.Module):
def __init__(self, embed_dim, d_ff, dropout):
super(PoswiseFeedForwardNet, self).__init__()
"""
Two fc layers can also be described by two cnn with kernel_size=1.
"""
self.conv1 = nn.Conv1d(in_channels=embed_dim, out_channels=d_ff, kernel_size=1).to(device)
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=embed_dim, kernel_size=1).to(device)
self.dropout = nn.Dropout(p=dropout)
self.embed_dim = embed_dim
def forward(self, inputs):
"""
encoder: inputs: [batch_size, len_q=196, embed_dim=2048]
decoder: inputs: [batch_size, max_len=52, embed_dim=512]
"""
residual = inputs
output = nn.ReLU()(self.conv1(inputs.transpose(1, 2)))
output = self.conv2(output).transpose(1, 2)
output = self.dropout(output)
return nn.LayerNorm(self.embed_dim).to(device)(output + residual)
class DecoderLayer(nn.Module):
def __init__(self, embed_dim,encoder_out_dim, dropout, attention_method, n_heads):
super(DecoderLayer, self).__init__()
self.dec_self_attn = Multi_Head_Attention(Q_dim=embed_dim, K_dim=embed_dim, QKVdim=64, n_heads=n_heads, dropout=dropout)
if attention_method == "ByPixel":
self.dec_enc_attn = Multi_Head_Attention(Q_dim=embed_dim, K_dim=encoder_out_dim, QKVdim=64, n_heads=n_heads, dropout=dropout)
self.pos_ffn = PoswiseFeedForwardNet(embed_dim=embed_dim, d_ff=encoder_out_dim, dropout=dropout)
elif attention_method == "ByChannel":
self.dec_enc_attn = Multi_Head_Attention(Q_dim=embed_dim, K_dim=196, QKVdim=64, n_heads=n_heads, dropout=dropout)
self.pos_ffn = PoswiseFeedForwardNet(embed_dim=embed_dim, d_ff=2048, dropout=dropout) # need to change
def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
"""
:param dec_inputs: [batch_size, max_len=52, embed_dim=512]
:param enc_outputs: [batch_size, num_pixels=196, 2048]
:param dec_self_attn_mask: [batch_size, 52, 52]
:param dec_enc_attn_mask: [batch_size, 52, 196]
"""
dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
dec_outputs = self.pos_ffn(dec_outputs)
return dec_outputs, dec_self_attn, dec_enc_attn
class Decoder(nn.Module):
def __init__(self, n_layers, vocab_size, embed_dim,encoder_out_dim, dropout, attention_method, n_heads):
super(Decoder, self).__init__()
self.vocab_size = vocab_size
self.tgt_emb = nn.Embedding(vocab_size, embed_dim, padding_idx=0)
self.pos_emb = nn.Embedding.from_pretrained(self.get_position_embedding_table(embed_dim), freeze=True)
self.dropout = nn.Dropout(p=dropout)
self.layers = nn.ModuleList([DecoderLayer(embed_dim, encoder_out_dim, dropout, attention_method, n_heads) for _ in range(n_layers)])
self.projection = nn.Linear(embed_dim, vocab_size, bias=False).to(device)
self.attention_method = attention_method
self.decoder_aggregation = [0] * (n_layers - 1)
for i in range(n_layers - 1):
self.decoder_aggregation[i] = PoswiseFeedForwardNet2(embed_dim=embed_dim, d_ff=encoder_out_dim, dropout=dropout)
def get_position_embedding_table(self, embed_dim):
def cal_angle(position, hid_idx):
return position / np.power(10000, 2 * (hid_idx // 2) / embed_dim)
def get_posi_angle_vec(position):
return [cal_angle(position, hid_idx) for hid_idx in range(embed_dim)]
embedding_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(52)])
embedding_table[:, 0::2] = np.sin(embedding_table[:, 0::2]) # dim 2i
embedding_table[:, 1::2] = np.cos(embedding_table[:, 1::2]) # dim 2i+1
return torch.FloatTensor(embedding_table).to(device)
def get_attn_pad_mask(self, seq_q, seq_k):
batch_size, len_q = seq_q.size()
batch_size, len_k = seq_k.size()
# In wordmap, <pad>:0
# pad_attn_mask: [batch_size, 1, len_k], one is masking
pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)
return pad_attn_mask.expand(batch_size, len_q, len_k) # [batch_size, len_q, len_k]
def get_attn_subsequent_mask(self, seq):
attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
subsequent_mask = np.triu(np.ones(attn_shape), k=1)
subsequent_mask = torch.from_numpy(subsequent_mask).byte().to(device)
return subsequent_mask
def forward(self, encoder_out, encoded_captions, caption_lengths):
"""
:param encoder_out: [batch_size, num_pixels=196, 2048]
:param encoded_captions: [batch_size, 52]
:param caption_lengths: [batch_size, 1]
"""
batch_size = encoder_out.size(0)
# Sort input data by decreasing lengths.
caption_lengths, sort_ind = caption_lengths.squeeze(1).sort(dim=0, descending=True)
encoder_out = encoder_out[sort_ind]
encoded_captions = encoded_captions[sort_ind]
# We won't decode at the <end> position, since we've finished generating as soon as we generate <end>
# So, decoding lengths are actual lengths - 1
decode_lengths = (caption_lengths - 1).tolist()
# dec_outputs: [batch_size, max_len=52, embed_dim=512]
# dec_self_attn_pad_mask: [batch_size, len_q=52, len_k=52], 1 if id=0(<pad>)
# dec_self_attn_subsequent_mask: [batch_size, 52, 52], Upper triangle of an array with 1.
# dec_self_attn_mask for self-decoder attention, the position whose val > 0 will be masked.
# dec_enc_attn_mask for encoder-decoder attention.
# e.g. 9488, 23, 53, 74, 0, 0 | dec_self_attn_mask:
# 0 1 1 1 2 2
# 0 0 1 1 2 2
# 0 0 0 1 2 2
# 0 0 0 0 2 2
# 0 0 0 0 1 2
# 0 0 0 0 1 1
dec_outputs = self.tgt_emb(encoded_captions) + self.pos_emb(torch.LongTensor([list(range(52))]*batch_size).to(device))
dec_outputs = self.dropout(dec_outputs)
dec_self_attn_pad_mask = self.get_attn_pad_mask(encoded_captions, encoded_captions)
dec_self_attn_subsequent_mask = self.get_attn_subsequent_mask(encoded_captions)
dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)
if self.attention_method == "ByPixel":
dec_enc_attn_mask = (torch.tensor(np.zeros((batch_size, 52, num_pixels))).to(device) == torch.tensor(np.ones((batch_size, 52, num_pixels))).to(device))
elif self.attention_method == "ByChannel":
dec_enc_attn_mask = (torch.tensor(np.zeros((batch_size, 52, channel_number))).to(device) == torch.tensor(np.ones((batch_size, 52, channel_number))).to(device))
dec_self_attns, dec_enc_attns = [], []
decoderlayers_outputs = []
for layer in self.layers:
# attn: [batch_size, n_heads, len_q, len_k]
# dec_outputs:[32,52,512]
dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, encoder_out, dec_self_attn_mask, dec_enc_attn_mask)
dec_self_attns.append(dec_self_attn)
dec_enc_attns.append(dec_enc_attn)
decoderlayers_outputs.append(dec_outputs)
# # FIXME:
# dec_outputs = decoderlayers_outputs[0]
# for i in range(len(decoderlayers_outputs)-1):
# dec_outputs = self.decoder_aggregation[i](decoderlayers_outputs[i + 1], dec_outputs)
predictions = self.projection(dec_outputs)
return predictions, encoded_captions, decode_lengths, sort_ind, dec_self_attns, dec_enc_attns
class EncoderLayer(nn.Module):
def __init__(self, dropout, attention_method, n_heads):
super(EncoderLayer, self).__init__()
"""
In "Attention is all you need" paper, dk = dv = 64, h = 8, N=6
"""
if attention_method == "ByPixel":
self.enc_self_attn = Multi_Head_Attention(Q_dim=2048, K_dim=2048, QKVdim=64, n_heads=n_heads, dropout=dropout)
self.pos_ffn = PoswiseFeedForwardNet(embed_dim=2048, d_ff=4096, dropout=dropout)
elif attention_method == "ByChannel":
self.enc_self_attn = Multi_Head_Attention(Q_dim=196, K_dim=196, QKVdim=64, n_heads=n_heads, dropout=dropout)
self.pos_ffn = PoswiseFeedForwardNet(embed_dim=196, d_ff=512, dropout=dropout)
def forward(self, enc_inputs, enc_self_attn_mask):
"""
:param enc_inputs: [batch_size, num_pixels=196, 2048]
:param enc_outputs: [batch_size, len_q=196, d_model=2048]
:return: attn: [batch_size, n_heads=8, 196, 196]
"""
enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask)
enc_outputs = self.pos_ffn(enc_outputs)
return enc_outputs, attn
class Encoder(nn.Module):
def __init__(self, encoder_input_dim, n_layers, dropout, attention_method, n_heads):
super(Encoder, self).__init__()
self.encoder_input_dim = encoder_input_dim
if attention_method == "ByPixel":
self.pos_emb = nn.Embedding.from_pretrained(self.get_position_embedding_table(), freeze=True)
# self.dropout = nn.Dropout(p=dropout)
self.layers = nn.ModuleList([EncoderLayer(dropout, attention_method, n_heads) for _ in range(n_layers)])
self.attention_method = attention_method
def get_position_embedding_table(self):
def cal_angle(position, hid_idx):
x_enc = position / np.power(10000, 2*hid_idx / 2048) # dmodel=2048
if hid_idx % 2 ==0:
return np.sin(x_enc)
else:
return np.cos(x_enc)
def get_posi_angle_vec(position):
return [cal_angle(position, hid_idx) for hid_idx in range(2048)]
embedding_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(num_pixels)])
return torch.FloatTensor(embedding_table).to(device)
def forward(self, encoder_out):
"""
:param encoder_out: [batch_size, num_pixels=196, dmodel=2048]
"""
batch_size = encoder_out.size(0)
positions = encoder_out.size(1)
if self.attention_method == "ByPixel":
encoder_out = encoder_out + self.pos_emb(torch.LongTensor([list(range(positions))]*batch_size).to(device))
# encoder_out = self.dropout(encoder_out)
# enc_self_attn_mask: [batch_size, 196, 196]
enc_self_attn_mask = (torch.tensor(np.zeros((batch_size, positions, positions))).to(device)
== torch.tensor(np.ones((batch_size, positions, positions))).to(device))
enc_self_attns = []
encoderlayers_out = []
for layer in self.layers:
encoder_out, enc_self_attn = layer(encoder_out, enc_self_attn_mask)
encoderlayers_out.append(encoder_out)
# encoder_out = encoder_out + self.pos_emb(torch.LongTensor([list(range(positions))] * batch_size).to(device)) # FIXME:
enc_self_attns.append(enc_self_attn)
return encoder_out, encoderlayers_out,enc_self_attns
class Transformer(nn.Module):
"""
See paper 5.4: "Attention Is All You Need" - https://arxiv.org/abs/1706.03762
"Apply dropout to the output of each sub-layer, before it is added to the sub-layer input and normalized.
In addition, apply dropout to the sums of the embeddings and the positional encodings in both the encoder
and decoder stacks." (Now, we dont't apply dropout to the encoder embeddings)
"""
def __init__(self, vocab_size, embed_dim, encoder_layers, decoder_layers, dropout=0.1, attention_method="ByPixel", n_heads=8):
super(Transformer, self).__init__()
encoder_input_dim =2048
self.encoder = Encoder(encoder_input_dim, encoder_layers, dropout, attention_method, n_heads)
encoder_out_dim = encoder_input_dim # 4096
self.decoder = Decoder(decoder_layers, vocab_size, embed_dim, encoder_out_dim, dropout, attention_method, n_heads)
self.embedding = self.decoder.tgt_emb
self.attention_method = attention_method
# self.encoder_aggregation = [0]*(encoder_layers-1)
# for i in range(encoder_layers-1):
# self.encoder_aggregation[i] = PoswiseFeedForwardNet2(embed_dim=encoder_input_dim, d_ff=4096, dropout=dropout)
#FIXME:下面是初始化LSTM的
self.lstm_embedding = nn.Embedding(encoder_input_dim, encoder_input_dim) # embedding layer
self.dropout = nn.Dropout(p=dropout)
self.decode_step = nn.LSTMCell(encoder_input_dim, encoder_input_dim, bias=True) # decoding LSTMCell,只在初始时刻输入特征
self.init_h = nn.Linear(encoder_input_dim, encoder_input_dim) # linear layer to find initial hidden state of LSTMCell
self.init_c = nn.Linear(encoder_input_dim, encoder_input_dim) # linear layer to find initial cell state of LSTMCell
self.f_beta = nn.Linear(encoder_input_dim, encoder_input_dim) # linear layer to create a sigmoid-activated gate
self.sigmoid = nn.Sigmoid()
self.fc = nn.Linear(encoder_input_dim, encoder_input_dim) # linear layer to find scores over vocabulary
self.init_weights() # initialize some layers with the uniform distribution
def load_pretrained_embeddings(self, embeddings):
self.embedding.weight = nn.Parameter(embeddings)
def fine_tune_embeddings(self, fine_tune=True):
for p in self.embedding.parameters():
p.requires_grad = fine_tune
#FIXME:下面是两个LSTM的函数
def init_weights(self):
"""
Initializes some parameters with values from the uniform distribution, for easier convergence.
"""
self.embedding.weight.data.uniform_(-0.1, 0.1)
self.fc.bias.data.fill_(0)
self.fc.weight.data.uniform_(-0.1, 0.1)
def init_hidden_state(self, encoder_out):
"""
Creates the initial hidden and cell states for the decoder's LSTM based on the encoded images.
:param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim)
:return: hidden state, cell state
"""
mean_encoder_out = encoder_out.mean(dim=1)
h = self.init_h(mean_encoder_out) # (batch_size, decoder_dim)
c = self.init_c(mean_encoder_out)
return h, c
def forward(self, enc_inputs, encoded_captions, caption_lengths):
"""
preprocess: enc_inputs: [batch_size, 14, 14, 2048]/[batch_size, 196, 2048] -> [batch_size, 196, 2048]
encoded_captions: [batch_size, 52]
caption_lengths: [batch_size, 1], not used
The encoder or decoder is composed of a stack of n_layers=6 identical layers.
One layer in encoder: Multi-head Attention(self-encoder attention) with Norm & Residual
+ Feed Forward with Norm & Residual
One layer in decoder: Masked Multi-head Attention(self-decoder attention) with Norm & Residual
+ Multi-head Attention(encoder-decoder attention) with Norm & Residual
+ Feed Forward with Norm & Residual
"""
batch_size = enc_inputs.size(0)
encoder_dim = enc_inputs.size(-1)
if self.attention_method == "ByPixel":
enc_inputs = enc_inputs.view(batch_size, -1, encoder_dim)
# elif self.attention_method == "ByChannel":
# enc_inputs = enc_inputs.view(batch_size, -1, encoder_dim).permute(0, 2, 1) # (batch_size, 2048, 196)
encoder_out, encoderlayers_out, enc_self_attns = self.encoder(enc_inputs)# encoder_out: [batch_size, 196, 2048]
encoder_out = encoderlayers_out[0]
# for i in range(len(encoderlayers_out)-1):
# encoder_out = self.encoder_aggregation[i](encoderlayers_out[i+1],encoder_out)
# FIXME:LSTM
h, c = self.init_hidden_state(enc_inputs)
encoderout2 = torch.zeros_like(encoder_out)
for k in range(196):
# h, c = self.init_hidden_state(enc_inputs) #
for t in range(len(encoderlayers_out) ):
h, c = self.decode_step(encoderlayers_out[t][:,k,:],(h, c))
preds = self.fc(self.dropout(h)) # (batch_size_t, vocab_size)
encoderout2[:, k, :] = preds
predictions, encoded_captions, decode_lengths, sort_ind, dec_self_attns, dec_enc_attns = self.decoder(encoderout2, encoded_captions, caption_lengths)
alphas = {"enc_self_attns": enc_self_attns, "dec_self_attns": dec_self_attns, "dec_enc_attns": dec_enc_attns}
return predictions, encoded_captions, decode_lengths, alphas, sort_ind