forked from XuMayi/PyABSA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlca_bert.py
72 lines (57 loc) · 2.91 KB
/
lca_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# -*- coding: utf-8 -*-
# file: lca_bert.py
# author: yangheng <yangheng@m.scnu.edu.cn>
# Copyright (C) 2020. All Rights Reserved.
import copy
import torch
import torch.nn as nn
from transformers.models.bert.modeling_bert import BertPooler
from pyabsa.network.sa_encoder import Encoder
class LCA_BERT(nn.Module):
inputs = ['text_bert_indices', 'text_raw_bert_indices', 'lcf_vec', 'polarity']
def __init__(self, bert, opt):
super(LCA_BERT, self).__init__()
self.bert4global = bert
self.bert4local = copy.deepcopy(bert)
self.lc_embed = nn.Embedding(2, opt.embed_dim)
self.lc_linear = nn.Linear(opt.embed_dim * 2, opt.embed_dim)
self.opt = opt
self.dropout = nn.Dropout(opt.dropout)
self.bert_SA_L = Encoder(bert.config, opt)
self.bert_SA_G = Encoder(bert.config, opt)
self.cat_linear = nn.Linear(opt.embed_dim * 2, opt.embed_dim)
self.pool = BertPooler(bert.config)
self.dense = nn.Linear(opt.embed_dim, opt.polarities_dim)
self.classifier = nn.Linear(opt.embed_dim, 2)
self.lca_criterion = nn.CrossEntropyLoss()
self.classification_criterion = nn.CrossEntropyLoss()
def forward(self, inputs):
if self.opt.use_bert_spc:
text_global_indices = inputs['text_bert_indices']
else:
text_global_indices = inputs['text_raw_bert_indices']
text_local_indices = inputs['text_raw_bert_indices']
lca_ids = inputs['lcf_vec'].long()
lcf_matrix = lca_ids.unsqueeze(2) # lca_ids is the same as lcf_matrix
polarity = inputs['polarity'] if 'polarity' in inputs else None
bert_global_out = self.bert4global(text_global_indices)['last_hidden_state']
bert_local_out = self.bert4local(text_local_indices)['last_hidden_state']
lc_embedding = self.lc_embed(lca_ids)
bert_global_out = self.lc_linear(torch.cat((bert_global_out, lc_embedding), -1))
# # LCF-layer
bert_local_out = torch.mul(bert_local_out, lcf_matrix)
bert_local_out = self.bert_SA_L(bert_local_out)
cat_features = torch.cat((bert_local_out, bert_global_out), dim=-1)
cat_features = self.cat_linear(cat_features)
lca_logits = self.classifier(cat_features)
lca_logits = lca_logits.view(-1, 2)
lca_ids = lca_ids.view(-1)
cat_features = self.dropout(cat_features)
pooled_out = self.pool(cat_features)
sent_logits = self.dense(pooled_out)
if polarity is not None:
lcp_loss = self.lca_criterion(lca_logits, lca_ids)
sent_loss = self.classification_criterion(sent_logits, polarity)
return {'logits': sent_logits, 'hidden_state': pooled_out, 'loss': (1 - self.opt.sigma) * sent_loss + self.opt.sigma * lcp_loss}
else:
return {'logits': sent_logits, 'hidden_state': pooled_out}