forked from gbaydin/hypergradient-descent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
263 lines (237 loc) · 11.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import traceback
import argparse
import sys
import os
import csv
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import datasets, transforms
import vgg
from torch.utils.data import DataLoader
from torch.optim import SGD, Adam
from hypergrad import SGDHD, AdamHD
class LogReg(nn.Module):
def __init__(self, input_dim, output_dim):
super(LogReg, self).__init__()
self._input_dim = input_dim
self.lin1 = nn.Linear(input_dim, output_dim)
def forward(self, x):
x = x.view(-1, self._input_dim)
x = self.lin1(x)
return x
class MLP(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(MLP, self).__init__()
self._input_dim = input_dim
self.lin1 = nn.Linear(input_dim, hidden_dim)
self.lin2 = nn.Linear(hidden_dim, hidden_dim)
self.lin3 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = x.view(-1, self._input_dim)
x = F.relu(self.lin1(x))
x = F.relu(self.lin2(x))
x = self.lin3(x)
return x
def train(opt, log_func=None):
torch.manual_seed(opt.seed)
if opt.cuda:
torch.cuda.set_device(opt.device)
torch.cuda.manual_seed(opt.seed)
torch.backends.cudnn.enabled = True
if opt.model == 'logreg':
model = LogReg(28 * 28, 10)
elif opt.model == 'mlp':
model = MLP(28 * 28, 1000, 10)
elif opt.model == 'vgg':
model = vgg.vgg16_bn()
if opt.parallel:
model.features = torch.nn.DataParallel(model.features)
else:
raise Exception('Unknown model: {}'.format(opt.model))
if opt.cuda:
model = model.cuda()
if opt.model == 'logreg' or opt.model == 'mlp':
task = 'MNIST'
train_loader = DataLoader(
datasets.MNIST('./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=opt.batchSize, shuffle=True)
valid_loader = DataLoader(
datasets.MNIST('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=opt.batchSize, shuffle=False)
elif opt.model == 'vgg':
task = 'CIFAR10'
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(root='./data', train=True, transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
transforms.ToTensor(),
normalize,
]), download=True),
batch_size=opt.batchSize, shuffle=True,
num_workers=opt.workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(root='./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
normalize,
])),
batch_size=opt.batchSize, shuffle=False,
num_workers=opt.workers, pin_memory=True)
else:
raise Exception('Unknown model: {}'.format(opt.model))
if opt.method == 'sgd':
optimizer = SGD(model.parameters(), lr=opt.alpha_0, weight_decay=opt.weightDecay)
elif opt.method == 'sgd_hd':
optimizer = SGDHD(model.parameters(), lr=opt.alpha_0, weight_decay=opt.weightDecay, hypergrad_lr=opt.beta)
elif opt.method == 'sgdn':
optimizer = SGD(model.parameters(), lr=opt.alpha_0, weight_decay=opt.weightDecay, momentum=opt.mu, nesterov=True)
elif opt.method == 'sgdn_hd':
optimizer = SGDHD(model.parameters(), lr=opt.alpha_0, weight_decay=opt.weightDecay, momentum=opt.mu, nesterov=True, hypergrad_lr=opt.beta)
elif opt.method == 'adam':
optimizer = Adam(model.parameters(), lr=opt.alpha_0, weight_decay=opt.weightDecay)
elif opt.method == 'adam_hd':
optimizer = AdamHD(model.parameters(), lr=opt.alpha_0, weight_decay=opt.weightDecay, hypergrad_lr=opt.beta)
else:
raise Exception('Unknown method: {}'.format(opt.method))
if not opt.silent:
print('Task: {}, Model: {}, Method: {}'.format(task, opt.model, opt.method))
model.eval()
for batch_id, (data, target) in enumerate(train_loader):
data, target = Variable(data), Variable(target)
if opt.cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
loss = F.cross_entropy(output, target)
loss = loss.data[0]
break
valid_loss = 0
for data, target in valid_loader:
data, target = Variable(data, volatile=True), Variable(target)
if opt.cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
valid_loss += F.cross_entropy(output, target, size_average=False).data[0]
valid_loss /= len(valid_loader.dataset)
if log_func is not None:
log_func(0, 0, 0, loss, loss, valid_loss, opt.alpha_0, opt.alpha_0, opt.beta)
time_start = time.time()
iteration = 1
epoch = 1
done = False
while not done:
model.train()
loss_epoch = 0
alpha_epoch = 0
for batch_id, (data, target) in enumerate(train_loader):
data, target = Variable(data), Variable(target)
if opt.cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
loss = loss.data[0]
loss_epoch += loss
alpha = optimizer.param_groups[0]['lr']
alpha_epoch += alpha
iteration += 1
if opt.iterations != 0:
if iteration > opt.iterations:
print('Early stopping: iteration > {}'.format(opt.iterations))
done = True
break
if opt.lossThreshold >= 0:
if loss <= opt.lossThreshold:
print('Early stopping: loss <= {}'.format(opt.lossThreshold))
done = True
break
if batch_id + 1 >= len(train_loader):
loss_epoch /= len(train_loader)
alpha_epoch /= len(train_loader)
model.eval()
valid_loss = 0
for data, target in valid_loader:
data, target = Variable(data, volatile=True), Variable(target)
if opt.cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
valid_loss += F.cross_entropy(output, target, size_average=False).data[0]
valid_loss /= len(valid_loader.dataset)
if log_func is not None:
log_func(epoch, iteration, time.time() - time_start, loss, loss_epoch, valid_loss, alpha, alpha_epoch, opt.beta)
else:
if log_func is not None:
log_func(epoch, iteration, time.time() - time_start, loss, float('nan'), float('nan'), alpha, float('nan'), opt.beta)
epoch += 1
if opt.epochs != 0:
if epoch > opt.epochs:
print('Early stopping: epoch > {}'.format(opt.epochs))
done = True
return loss, iteration
def main():
try:
parser = argparse.ArgumentParser(description='Hypergradient descent PyTorch tests', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--cuda', help='use CUDA', action='store_true')
parser.add_argument('--device', help='selected CUDA device', default=0, type=int)
parser.add_argument('--seed', help='random seed', default=1, type=int)
parser.add_argument('--dir', help='directory to write the output files', default='results', type=str)
parser.add_argument('--model', help='model (logreg, mlp, vgg)', default='logreg', type=str)
parser.add_argument('--method', help='method (sgd, sgd_hd, sgdn, sgdn_hd, adam, adam_hd)', default='adam', type=str)
parser.add_argument('--alpha_0', help='initial learning rate', default=0.001, type=float)
parser.add_argument('--beta', help='learning learning rate', default=0.000001, type=float)
parser.add_argument('--mu', help='momentum', default=0.9, type=float)
parser.add_argument('--weightDecay', help='regularization', default=0.0001, type=float)
parser.add_argument('--batchSize', help='minibatch size', default=128, type=int)
parser.add_argument('--epochs', help='stop after this many epochs (0: disregard)', default=2, type=int)
parser.add_argument('--iterations', help='stop after this many iterations (0: disregard)', default=0, type=int)
parser.add_argument('--lossThreshold', help='stop after reaching this loss (0: disregard)', default=0, type=float)
parser.add_argument('--silent', help='do not print output', action='store_true')
parser.add_argument('--workers', help='number of data loading workers', default=4, type=int)
parser.add_argument('--parallel', help='parallelize', action='store_true')
parser.add_argument('--save', help='do not save output to file', action='store_true')
opt = parser.parse_args()
torch.manual_seed(opt.seed)
if opt.cuda:
torch.cuda.set_device(opt.device)
torch.cuda.manual_seed(opt.seed)
torch.backends.cudnn.enabled = True
file_name = '{}/{}/{:+.0e}_{:+.0e}/{}.csv'.format(opt.dir, opt.model, opt.alpha_0, opt.beta, opt.method)
os.makedirs(os.path.dirname(file_name), exist_ok=True)
if not opt.silent:
print('Output file: {}'.format(file_name))
# if os.path.isfile(file_name):
# print('File with previous results exists, skipping...')
# else:
if not opt.save:
def log_func(epoch, iteration, time_spent, loss, loss_epoch, valid_loss, alpha, alpha_epoch, beta):
if not opt.silent:
print('{} | {} | Epoch: {} | Iter: {} | Time: {:+.3e} | Loss: {:+.3e} | Valid. loss: {:+.3e} | Alpha: {:+.3e} | Beta: {:+.3e}'.format(opt.model, opt.method, epoch, iteration, time_spent, loss, valid_loss, alpha, beta))
train(opt, log_func)
else:
with open(file_name, 'w') as f:
writer = csv.writer(f)
writer.writerow(['Epoch', 'Iteration', 'Time', 'Loss', 'LossEpoch', 'ValidLossEpoch', 'Alpha', 'AlphaEpoch', 'Beta'])
def log_func(epoch, iteration, time_spent, loss, loss_epoch, valid_loss, alpha, alpha_epoch, beta):
writer.writerow([epoch, iteration, time_spent, loss, loss_epoch, valid_loss, alpha, alpha_epoch, beta])
if not opt.silent:
print('{} | {} | Epoch: {} | Iter: {} | Time: {:+.3e} | Loss: {:+.3e} | Valid. loss: {:+.3e} | Alpha: {:+.3e} | Beta: {:+.3e}'.format(opt.model, opt.method, epoch, iteration, time_spent, loss, valid_loss, alpha, beta))
train(opt, log_func)
except KeyboardInterrupt:
print('Stopped')
except Exception:
traceback.print_exc(file=sys.stdout)
sys.exit(0)
if __name__ == "__main__":
main()