-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengineMicro.py
170 lines (127 loc) · 5.12 KB
/
engineMicro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import time
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from torch.utils.data import TensorDataset
from transformerModel import BallerModel
def train(model, loss_func, optim, scheduler, dataloaders, epochs, device, src_mask, tgt_mask, verbose=True):
'''
- model: model to train
- loss_func: loss function
- optim: optimizer
- scheduler: lr scheduler
- dataloaders: tuple of train and val dataloaders
- epochs: number of training iterations
- device: for gpu
- src_mask: mask for encoder output
- tgt_mask: mask for target shifted right
'''
train_dl, val_dl = dataloaders
train_losses, val_losses= [],[]
start_time = time.time()
last_epoch_time = start_time
print("################")
print("#Begin training#")
print("################")
for epoch in range(epochs):
model.train()
train_loss, running_loss, total_count,running_total_count = 0,0,0,0
for i, (X,y,_) in enumerate(train_dl):
X = X.to(device)
y = y.to(device)
total_count += y.shape[0]
running_total_count += y.shape[0]
#zero out the previous grads
optim.zero_grad()
#compute output
tgt = torch.concat((X[:,-1,0].unsqueeze(1), y[:,:-1]), axis=1)
out = model(X,tgt,src_mask, tgt_mask)
#backward
loss = torch.sqrt(loss_func(out,y)) #use RMSE so units are not squared
train_loss += loss.item()
if verbose:
running_loss += loss.item()
loss.backward()
optim.step()
#print stats
if verbose and i % 10 == 9: # print every 10 mini-batches
print(f'[Epoch: {epoch}, Batch:{i + 1:5d}] loss: {running_loss / running_total_count:.3f}')
running_loss = 0.0
running_total_count = 0
train_loss /= total_count
train_losses.append(train_loss)
#validation
val_loss = test(model, loss_func, val_dl, device, src_mask, tgt_mask)
val_losses.append(val_loss)
curr_time = time.time()
print(f"Epoch:{epoch} Train Loss:{train_loss:.05f} Val Loss:{val_loss:.05f}, Total Time:{curr_time - start_time}, Epoch Time:{curr_time - last_epoch_time}")
last_epoch_time = curr_time
if scheduler:
scheduler.step(val_loss)
print("###############")
print("#Done training#")
print("###############")
makePrettyGraphs(train_losses, val_losses)
return model, train_losses, val_losses
def test(model, loss_func, dataloader, device, src_mask, tgt_mask):
'''
- model: model to infer with
- loss_func: loss function
- dataloader: dataloader to evaluate on
- device: for gpu
- src_mask: mask for encoder output
- tgt_mask: mask for target shifted right
'''
model.eval()
loss_total,total_count = 0,0
with torch.no_grad():
for X,y,_ in dataloader:
X = X.to(device)
y = y.to(device)
total_count += y.shape[0]
tgt = torch.concat((X[:,-1,0].unsqueeze(1), y[:,:-1]), axis=1)
out = model(X,tgt,src_mask,tgt_mask)
loss = torch.sqrt(loss_func(out,y)) #use RMSE so units are not squared
loss_total += loss.item()
return loss_total/total_count
def makePrettyGraphs(train_losses, val_losses):
'''
- list of train and val accuracies and losses
'''
#pretty graphs
ind = [x for x in range(1,len(train_losses)+1)]
plt.subplot(1,2,1)
plt.plot(ind, train_losses)
plt.title("Average Train Loss per sample VS Epoch")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.subplot(1,2,2)
plt.plot(ind, val_losses)
plt.title("Average Validation Loss per sample VS Epoch")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.tight_layout()
def run_inference(model, src, forecast_window, batch_size, device):
tgt = src[:,-1,0] # shape (batch, xyz)
tgt = tgt.unsqueeze(1) # shape (batch, seq=1, xyz)
# Iteratively concatenate with first element in the prediction
for _ in range(forecast_window-1):
src_mask = BallerModel.generate_square_subsequent_mask(
dim1=tgt.shape[1],
dim2=src.shape[1]
)
src_mask = src_mask.to(device)
prediction = model(src, tgt, src_mask, None) # shape (batch, seq, xyz)
last_pred_val = prediction[:,-1] # shape (batch, xyz)
last_pred_val = last_pred_val.unsqueeze(1) # shape (batch, seq=1, xyz)
tgt = torch.cat((tgt, last_pred_val.detach()), 1) # concat on seq dim
# Final prediction
src_mask = BallerModel.generate_square_subsequent_mask(
dim1=tgt.shape[1],
dim2=src.shape[1]
)
src_mask = src_mask.to(device)
final_pred = model(src, tgt, src_mask, None) # shape (batch, seq, xyz)
return final_pred