-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpretrain_env.py
184 lines (159 loc) · 7.07 KB
/
pretrain_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import argparse
import torch
from torch import nn
import torch.optim as opt
from torch.nn import functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
import numpy as np
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import pickle
from sklearn.manifold import TSNE
import time as timer
import data_extract as dae
from data_loader import UserSlateResponseDataset
from env.response_model import UserResponseModel_MLP, sample_users
import my_utils as utils
import settings
#######################################################
# train response model #
#######################################################
def train_response_model(trainset, valset, f_size, s_size, struct, bs, epochs, lr, decay, device, model_path, logger):
'''
@input:
- trainset and valset: data_loader.UserSlateResponseDataset
- f_size: embedding size for item and user
- s_size: slate size
- struct: response model structure
- bs: batch size
- epochs: number of epoch
- lr: learning rate
- decay: L2 norm coefficient
- device: "cpu", "cuda:0", etc.
'''
logger.log("Train user response model as simulator")
logger.log("\tfeature size: " + str(f_size))
logger.log("\tslate size: " + str(s_size))
logger.log("\tstruct: " + str(struct))
logger.log("\tbatch size: " + str(bs))
logger.log("\tnumber of epoch: " + str(epochs))
logger.log("\tlearning rate: " + str(lr))
logger.log("\tdevice: " + device)
# set up model
model = UserResponseModel_MLP(trainset.max_iid, trainset.max_uid, \
f_size, s_size, struct, device, trainset.noUser)
model.to(device)
# data loaders
trainLoader = DataLoader(trainset, batch_size = bs, shuffle = True, num_workers = 0)
valLoader = DataLoader(valset, batch_size = bs, shuffle = False, num_workers = 0)
# loss function and optimizer
BCE = nn.BCELoss()
m = nn.Sigmoid()
optimizer = opt.Adam(model.parameters(), lr = lr, weight_decay = decay)
# optimizer = opt.SGD(model.parameters(), lr=lr, weight_decay = decay)
runningLoss = [] # step loss history
trainHistory = [] # epoch training loss
valHistory = [] # epoch validation loss
bestLoss = np.float("inf")
bestValLoss = np.float("inf")
# optimization
temper = 3
for epoch in range(epochs):
logger.log("Epoch " + str(epoch + 1))
# training
batchLoss = []
pbar = tqdm(total = len(trainset))
for i, batchData in enumerate(trainLoader):
optimizer.zero_grad()
# get input and target and forward
slates = torch.LongTensor(batchData["slates"]).to(model.device)
users = torch.LongTensor(batchData["users"]).to(model.device)
targets = torch.tensor(batchData["responses"]).to(torch.float).to(model.device)
pred = model.forward(slates, users)
# loss
loss = BCE(m(pred.reshape(-1)), targets.reshape(-1))
batchLoss.append(loss.item())
if len(batchLoss) >= 50:
runningLoss.append(np.mean(batchLoss[-50:]))
# backward and optimize
loss.backward()
optimizer.step()
# update progress
pbar.update(len(users))
print("Embedding norm: " + str(torch.norm(model.docEmbed.weight[0], p = 2)))
# record epoch loss
trainHistory.append(np.mean(batchLoss))
pbar.close()
logger.log("train loss: " + str(trainHistory[-1]))
# validation
batchLoss = []
with torch.no_grad():
for i, batchData in tqdm(enumerate(valLoader)):
# get input and target and forward
slates = torch.LongTensor(batchData["slates"]).to(model.device)
users = torch.LongTensor(batchData["users"]).to(model.device)
targets = torch.tensor(batchData["responses"]).to(torch.float).to(model.device)
pred = model.forward(slates, users)
# loss
loss = BCE(m(pred.reshape(-1)), targets.reshape(-1))
batchLoss.append(loss.item())
valHistory.append(np.mean(batchLoss))
logger.log("Validation Loss: " + str(valHistory[-1]))
# save best model and early termination
if epoch == 0 or valHistory[-1] < bestValLoss - 1e-4:
torch.save(model, open(model_path, 'wb'))
logger.log("Save best model")
temper = 3
bestValLoss = valHistory[-1]
else:
temper -= 1
logger.log("Temper down to " + str(temper))
if temper == 0:
logger.log("Out of temper, early termination.")
break
logger.log("Move model to cpu before saving")
bestModel = torch.load(open(model_path, 'rb'))
bestModel.to("cpu")
bestModel.device = "cpu"
torch.save(bestModel, open(model_path, 'wb'))
#######################################
# main #
#######################################
def main(args):
logPath = utils.make_resp_model_path(args, "log/")
logger = utils.Logger(logPath)
if args.dataset != "yoochoose" and args.dataset != "movielens": # simulation envirionment
respModel, trainset, valset = dae.load_simulation(args, logger)
else: # real-world datasets
if args.dataset == "yoochoose":
train, val, test = dae.read_yoochoose(entire_set = True)
args.nouser == True
trainset = UserSlateResponseDataset(train["features"], train["sessions"], train["responses"], args.nouser)
trainset.balance_n_click()
valset = UserSlateResponseDataset(val["features"], val["sessions"], val["responses"], args.nouser)
elif args.dataset == "movielens":
train, val = dae.read_movielens(entire = True)
trainset = UserSlateResponseDataset(train["features"], train["sessions"], train["responses"], args.nouser)
valset = UserSlateResponseDataset(val["features"], val["sessions"], val["responses"], args.nouser)
# train response model
modelPath = utils.make_resp_model_path(args, "resp/")
struct = [int(v) for v in args.resp_struct[1:-1].split(",")]
import setproctitle
setproctitle.setproctitle("Kassandra")
train_response_model(trainset, valset,\
args.dim, args.s, struct, args.batch_size, \
args.epochs, args.lr, args.wdecay, args.device, modelPath, logger)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# real-world dataset configuration
parser = dae.add_data_parse(parser)
# simulation configuration
parser = dae.add_sim_parse(parser)
# training configuration
parser = utils.add_training_parse(parser)
# response model configuration
parser.add_argument('--dim', type=int, default=8, help='item/user embedding size')
parser.add_argument('--resp_struct', type=str, default="[48,256,256,5]", help='mlp structure for prediction')
args = parser.parse_args()
main(args)