-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDEIMOS-sum-rules.py
337 lines (247 loc) · 10.5 KB
/
DEIMOS-sum-rules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# -*- coding: utf-8 -*-
"""
FR
Permet de normaliser, recentrer sur 0, combiner et les spectres XAS/XMCD issues
de DEIMOS-SOLEIL puis d'appliquer automatiquement les règles de somme.
Un numéro de scan en entrée (avec un paramètre Tz sans incidence sur les calculs),
les 7 suivants étant le même échantillon avec +/-H et circulaire droit (CR) et gauche (CL).
EN
Allow the import, normalisation, centring and merging of XAS/XMCD spectra from
DEIMOS-SOLEIL beamline to automatically apply sum rules.
One scan number to give (with a Tz parameter without incidence on calculations),
the next 7 should be the same sample with +/-H and circular right (CR) and left (CL).
TO DO: use numpy.array instead of lists
"""
import numpy as np
import sys
#import matplotlib
import matplotlib.pyplot as plt
""" --------------- running mean function ---------------------- """
def running_mean(x, i, N):
out_mean=0
for j in range(-N,N+1):
out_mean=out_mean+x[j+i]
out_mean=(out_mean-x[i])/(2*N)
return out_mean
""" ----------------------------------------------------------- """
""" -------- function find nearest value in array --------------- """
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
""" ----------------------------------------------------------- """
""" --------------------- parameters ---------------------------- """
DebutScan=75
Tz=27
MethodePH=False
NbScans=8
""" ----------------------------------------------------------- """
""" ---------------- advanced parameters ----------------------- """
ScansPos=[0,3,5,6]
ScansNeg=[1,2,4,7]
NbScans=len(ScansPos)+len(ScansNeg)
""" ----------------------------------------------------------- """
"""--------------- error checking ---------------"""
if len(ScansPos) != len(ScansNeg): # useless for now
sys.exit('Error: Number of positive and negative scans is not equal')
""" ----------------------------------------------------------- """
"""--------------- import of data ---------------"""
energy=[]
i0=[]
it=[]
itio=[] # TEY
field=[]
if1=[]
ifio=[] # fluo
ition=[]
ifion=[]
minEnergy=10000
maxEnergy=0
for file in range(0,8):
energy.append([])
i0.append([])
it.append([])
itio.append([])
field.append([])
if1.append([])
ifio.append([])
ition.append([])
ifion.append([])
fichier = 'scan_'+ '%03i'%(DebutScan+file)+'.txt'
data = np.genfromtxt('./2020-02-12/'+fichier, skip_header=1) #delimiter=' '
for i in range(0,len(data)):
energy[file].append(data[i,2])
i0[file].append(data[i,6])
it[file].append(data[i,7])
itio[file].append(data[i,8])
field[file].append(data[i,10])
if1[file].append(data[i,12])
ifio[file].append(data[i,13])
if min(energy[file])<minEnergy:
minEnergy=min(energy[file])
if max(energy[file])>maxEnergy:
maxEnergy=max(energy[file])
NbPts=len(data)
""" ----------------------------------------------------------- """
"""--------------------- edge detection ---------------------"""
Seuil='unknown edge'
nh3d=0
if abs(energy[0][0]-705)<20: # Fe
Seuil='Fe'
nh3d=3.7 # 3.7 for L10, 3.39 for bulk
picL3tab=705
picL2tab=718
elif abs(energy[0][0]-775)<20: # Co
Seuil='Co'
nh3d=2.49
picL3tab=775
picL2tab=790
""" ----------------------------------------------------------- """
"""--------------------- merge + normalisation ---------------------"""
energyCR=[]
energyCL=[]
energyCLR=[]
XASTEY=[]
XMCDTEY=[]
XASFluo=[]
XMCDFluo=[]
XASTEYn=[] # normalised
XMCDTEYn=[] # normalised
XASFluon=[] # normalised
XMCDFluon=[] # normalised
mu_R_TEY=[]
mu_L_TEY=[]
mu_R_Fluo=[]
mu_L_Fluo=[]
mu_R_TEYn=[] # normalised
mu_L_TEYn=[] # normalised
mu_R_Fluon=[] # normalised
mu_L_Fluon=[] # normalised
for i in range(0,NbPts):
energyCR.append((energy[0][i]+energy[3][i]+energy[5][i]+energy[6][i])/4) # 0123 4567
energyCL.append((energy[1][i]+energy[2][i]+energy[4][i]+energy[7][i])/4) # +--+ and -H so -++- for Fe
energyCLR.append((energyCR[i]+energyCL[i])/2)
for file in range(0,8):
normDebutTEY=running_mean(itio[file],10,5)
normFinTEY=running_mean(itio[file],-10,5)
normDebutFluo=running_mean(ifio[file],10,5)
normFinFluo=running_mean(ifio[file],-10,5)
DeltaNormTEY=normFinTEY-normDebutTEY
DeltaNormFluo=normFinFluo-normDebutFluo
if (normDebutTEY>normFinTEY or normDebutFluo>normFinFluo) and MethodePH==True:
DeltaNormTEY=1
DeltaNormFluo=1
if (normDebutTEY>normFinTEY or normDebutFluo>normFinFluo) and MethodePH==False:
DeltaNormTEY=max(itio[file])
DeltaNormFluo=max(ifio[file])
for i in range(0,NbPts):
ition[file].append((itio[file][i]-normDebutTEY)/DeltaNormTEY)
ifion[file].append((ifio[file][i]-normDebutFluo)/DeltaNormFluo)
for i in range(0,NbPts): # merge
mu_R_TEYn.append((ition[0][i]+ition[3][i]+ition[5][i]+ition[6][i])/4)
mu_L_TEYn.append((ition[1][i]+ition[2][i]+ition[4][i]+ition[7][i])/4)
mu_R_Fluon.append((ifion[0][i]+ifion[3][i]+ifion[5][i]+ifion[6][i])/4)
mu_L_Fluon.append((ifion[1][i]+ifion[2][i]+ifion[4][i]+ifion[7][i])/4)
mu_R_TEY.append((itio[0][i]+itio[3][i]+itio[5][i]+itio[6][i])/4)
mu_L_TEY.append((itio[1][i]+itio[2][i]+itio[4][i]+itio[7][i])/4)
mu_R_Fluo.append((ifio[0][i]+ifio[3][i]+ifio[5][i]+ifio[6][i])/4)
mu_L_Fluo.append((ifio[1][i]+ifio[2][i]+ifio[4][i]+ifio[7][i])/4)
for i in range(0,NbPts):
XASTEY.append((mu_R_TEY[i]+mu_L_TEY[i])/2)
XMCDTEY.append(mu_R_TEY[i]-mu_L_TEY[i])
XASFluo.append((mu_R_Fluo[i]+mu_L_Fluo[i])/2)
XMCDFluo.append(mu_R_Fluo[i]-mu_L_Fluo[i])
XASTEYn.append((mu_R_TEYn[i]+mu_L_TEYn[i])/2)
XMCDTEYn.append(mu_R_TEYn[i]-mu_L_TEYn[i])
XASFluon.append((mu_R_Fluon[i]+mu_L_Fluon[i])/2)
XMCDFluon.append(mu_R_Fluon[i]-mu_L_Fluon[i])
if Seuil=='Fe': # because -++- for Fe (see first loop of this part)
for i in range(0,NbPts):
XMCDTEYn[i]=-XMCDTEYn[i]
XMCDFluon[i]=-XMCDFluon[i]
XMCDTEY[i]=-XMCDTEY[i]
XMCDFluo[i]=-XMCDFluo[i]
""" ----------------------------------------------------------- """
"""------- search max, min, calculation of step and holes for TEY ------"""
x=np.array(XASTEYn)
picL3tabnearest=find_nearest(energyCLR, picL3tab)
picL3tabi=np.where(energyCLR == picL3tabnearest)
picL3tabi=int(picL3tabi[0])
picL2tabnearest=find_nearest(energyCLR, picL2tab)
picL2tabi=np.where(energyCLR == picL2tabnearest)
picL2tabi=int(picL2tabi[0])
picL3=int(np.where(x == max(x[picL3tabi-50:picL3tabi+50]))[0])
picL2=int(np.where(x == max(x[picL2tabi-50:picL2tabi+50]))[0])
annotx=max(energyCLR) # for text position on plot
annoty=max(x)
minXASTEY=picL3
for i in range(picL3,picL2):
if XASTEYn[i]<XASTEYn[minXASTEY]:
minXASTEY=i
step=[]
holes=[]
for i in range(0,NbPts):
step.append((((2/(3*np.pi)*np.arctan((energyCLR[i]-energyCLR[picL3])/0.5))+1/3)+((1/(3*np.pi)*np.arctan((energyCLR[i]-energyCLR[picL2])/0.5))+1/6))*1.007-0.01)
holes.append(x[i]-step[i])
""" ----------------------------------------------------------- """
"""--------------------- plots ---------------------"""
plt.title('XAS, XMCD, step TEY')
plt.plot(energyCLR, x)
plt.plot(energyCLR, XMCDTEYn)
plt.plot(energyCLR, step)
plt.plot(energyCLR[picL3], x[picL3], 'x',color='black')
plt.plot(energyCLR[picL2], x[picL2], 'x',color='black')
plt.plot(energyCLR[minXASTEY], x[minXASTEY], 'x',color='red')
plt.annotate('TEY', xy=(annotx-15,annoty-2), color="black")
plt.annotate('Tz='+str(Tz), xy=(annotx-15,annoty-2.4), color="black")
plt.annotate(Seuil, xy=(annotx-15,annoty-2.8), color="black")
plt.grid(True)
plt.show()
plt.title('holes TEY')
plt.plot(energyCLR, holes)
#plt.plot(energyCLR, XASTEYn)
plt.plot(energyCLR[picL3], holes[picL3], 'x',color='black')
plt.plot(energyCLR[picL2], holes[picL2], 'x',color='black')
plt.plot(energyCLR[minXASTEY], holes[minXASTEY], 'x',color='red')
plt.annotate('TEY', xy=(annotx-15,annoty-2), color="black")
plt.annotate('Tz='+str(Tz), xy=(annotx-15,annoty-2.4), color="black")
plt.annotate(Seuil, xy=(annotx-15,annoty-2.8), color="black")
plt.grid(True)
plt.show()
""" ----------------------------------------------------------- """
"""--------------------- integration and sum rules ---------------------"""
IL3 = np.trapz(holes[0:minXASTEY],energyCLR[0:minXASTEY], dx=1)
IL2 = np.trapz(holes[minXASTEY:-1],energyCLR[minXASTEY:-1], dx=1)
DeltaIL3 = np.trapz(XMCDTEYn[0:minXASTEY],energyCLR[0:minXASTEY], dx=1)
DeltaIL2 = np.trapz(XMCDTEYn[minXASTEY:-1],energyCLR[minXASTEY:-1], dx=1)
C=nh3d/(IL3+IL2)
m_orb_d=-2*C*(DeltaIL3+DeltaIL2)/3
m_spineff_d=-C*(DeltaIL3-2*DeltaIL2)
print(' Tz='+str(Tz)+'\n Edge='+Seuil+'\n L3peak= '+str(energyCLR[picL3])+'\n L2peak='+str(energyCLR[picL2])+'\n min='+str(energyCLR[minXASTEY])+'\n nh3d='+str(nh3d)+'\n C='+str(C)+'\n morb='+str(m_orb_d)+'\n mspin eff='+str(m_spineff_d)+'\n mspin eff/morb='+str(m_spineff_d/m_orb_d))
print('-----------------------------------------')
print('----- to copy and paste directly in Origin workbook -----')
print(str(Tz)+'\t'+Seuil+'\t'+str(energyCLR[picL3])+'\t'+str(energyCLR[picL2])+'\t'+str(energyCLR[minXASTEY])+'\t'+str(nh3d)+'\t'+str(C)+'\t'+str(m_orb_d)+'\t'+str(m_spineff_d)+'\t'+str(m_spineff_d/m_orb_d))
print('-----------------------------------------')
""" ----------------------------------------------------------- """
# Copy and paste for the column title in Origin Workbook:
# Tz Edge L3 peak L2 peak interpeak min nh3d C morb mspin eff mspin eff/morb
"""
write .txt file as output
"""
#f=open('./output/'+Seuil+'-' +'Tz'+'%3.1f'%Tz+ '.txt','w+')
#f.write('E \t XAS TEY \t XMCD TEY \t XAS fluo \t XMCD fluo \t step TEY \t holes TEY \n')
#f.write(' \t \t \t \t \t \t \n')
#f.write('E ('+Seuil+' edge) \t Tz='+str(Tz)+' \t Tz='+str(Tz)+' \t Tz='+str(Tz)+' \t Tz='+str(Tz)+' \t Tz='+str(Tz)+' \t Tz='+str(Tz)+' \n')
#for i in range(0,NbPts):
# f.write('%.6E \t %.6E \t %.6E \t %.6E \t %.6E \t %.6E \t %.6E \n' %(energyCLR[i], XASTEYn[i], XMCDTEYn[i], XASFluon[i], XMCDFluon[i], step[i], holes[i]))
#f.close()
#
#
# f=open('./output/non-norme-'+Seuil+'-' +'Tz'+'%3.1f'%Tz+ '.txt','w+')
# f.write('E \t XAS TEY \t XMCD TEY \t XAS fluo \t XMCD fluo \n')
# f.write(' \t \t \t \t \n')
# f.write('E ('+Seuil+' edge) \t Tz='+str(Tz)+' \t Tz='+str(Tz)+' \t Tz='+str(Tz)+' \t Tz='+str(Tz)+' \n')
# for i in range(0,NbPts):
# f.write('%.6E \t %.6E \t %.6E \t %.6E \t %.6E \t %.6E \n' %(energyCLR[i], step[i], XASTEY[i], -XMCDTEY[i], XASFluo[i], -XMCDFluo[i]))
# f.close()
print('done')