-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
871 lines (659 loc) · 32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
import numpy as np
import matplotlib.pyplot as plt
from nltk import Tree, grammar
import random
import queue
import pickle as pkl
from scipy.spatial import distance
from PYEVALB import scorer
from PYEVALB import parser
from sklearn.metrics import precision_recall_fscore_support
import math
from itertools import product
from time import time
import argparse
def ignore_functional_labels(string):
"""
Description
----------------
Ignore functional labels in the non terminals of a rule, for example PP-MOD becomes PP.
Parameters
----------------
string : String, bracketed form of parse tree.
Returns
----------------
String, the corresponding bracketed form of parse tree without functional labels and axiom ''
"""
l = string.split(' ')[1:]
for i in range(len(l)):
if l[i][0] == '(':
l[i] = l[i].split('-')[0]
return ' '.join(l)[:-1]
def extract_nodes(rule):
"""
Description
---------------
Extract the non terminal and terminal nodes from a rule along with the status of the rule (either lexical 1, or not 0)
Parameters
---------------
rule : nltk.grammar.Production object, the rule to consider.
Returns
---------------
3-tuple, tuple[0] : the lexical status, whether the right hand side of the rule is a word or not.
tuple[1] : set containing the non terminal nodes of the rule.
tuple[2] : set containing the terminal nodes of the rule
"""
if rule.is_lexical():
return True, set((rule._lhs._symbol,)), set((rule._rhs))
else:
return False, set((rule._lhs._symbol,)).union(set((rule._rhs[0]._symbol, rule._rhs[1]._symbol))), set()
def grammar_infos(data):
"""
Description
---------------
State non terminals, terminals, pos tags, binaries and axioms of the grammar of the training data in chomsky normal form.
Parameters
---------------
data : List of strings containing the training data.
Returns
---------------
Sets of non terminals, terminals, pos tags and axioms.
"""
non_terminals = set()
pos_tags = set()
terminals = set()
binaries = set()
starts = set()
for string in data:
t = Tree.fromstring(ignore_functional_labels(string))
t.chomsky_normal_form(horzMarkov=2)
t.collapse_unary(collapsePOS=True, collapseRoot=True)
rules = t.productions()
starts.add(rules[0]._lhs._symbol)
for rule in rules:
lexical, non_terminal_nodes, terminal_nodes = extract_nodes(rule)
if lexical:
non_terminals = non_terminals.union(non_terminal_nodes)
pos_tags = pos_tags.union(non_terminal_nodes)
terminals = terminals.union(terminal_nodes)
else:
non_terminals = non_terminals.union(non_terminal_nodes)
if len(rule._rhs) == 2:
binaries.add((rule._rhs[0]._symbol, rule._rhs[1]._symbol))
return non_terminals, pos_tags, terminals, binaries, starts
def express_node(rule):
"""
Description
---------------
Express the nature of the rule and extract its left hand and right hand sides.
Parameters
---------------
rule : nltk.grammar.Production object, the rule to consider.
Returns
---------------
3-tuple, tuple[0] : String describing the rule {'lexical', 'start_node', 'unary', 'binary'}
tuple[1] : String, the left hand side of the rule.
tuple[2] : String, the right hand side of the rule.
"""
if rule.is_lexical():
return 'lexical', rule._lhs._symbol, rule._rhs[0].lower()
else:
lhs, rhs = rule._lhs._symbol, (rule._rhs[0]._symbol, rule._rhs[1]._symbol)
if len(rhs) == 2:
return 'binary', lhs, rhs
def pcfg(data):
"""
Description
----------------
Create PCFG model from the data, i.e compute the probability of each rule (conditional probabilities) statistically from the data.
Notice that we build the pcfg with lower case terminals since they surely have the same POS tags as their upper case couterparts
Parameters
----------------
data : List of strings representing parse trees.
Returns
----------------
dict_pcfg : Dictionnary with three keys {'lexical', 'unary', 'binary'}
- dict_pcfg['lexical'] : dictionnary of lexicons.
- keys : POS tags;
- values : dictionnary of probabilities p(terminal|POS_tag)
- keys : terminals.
- values : p(terminal|POS_tag)
- dict_pcfg['unary'] : dictionnary of unary laws.
- keys : non terminals;
- values : dictionnary of probabilities p(node|non_terminal), node here can be
either a POS tag or a non terminal.
- keys : non terminals.
- values : p(node|non_terminal)
- dict_pcfg['binary'] : dictionnary of binary laws.
- keys : non terminals;
- values : dictionnary of probabilities p(node|non_terminal), node here is binary
containing POS tags or non terminals.
- keys : non terminals.
- values : p(node|non_terminal)
dict_probas : Dictionnary rearranging the elements of dict_pcfg in a way that simplifies the use of the probabilities
in the CYK algorithm, keys in {'lexical', 'unary', 'binary'}
dictionnary of probabilities.
- dict_probas['lexical'] : dictionnary of lexicons.
- keys : terminals;
- values : dictionnary of probabilities p(terminal|POS_tag)
- keys : POS tags.
- values : p(terminal|POS_tag)
- dict_probas['unary'] : dictionnary of unary laws A->B
- keys : non terminals B;
- values : dictionnary of probabilities p(B|A),
- keys : non terminals A.
- values : p(B|A)
- dict_probas['binary'] : dictionnary of binary laws A->BC.
- keys : tuples of non terminals (B, C);
- values : dictionnary of probabilities p(BC|A)
- keys : non terminals A
- values : p(BC|A)
"""
# Initalize dictionnaries dict_lexicons, dict_unaries, dict_binaries that we put in dict_pcfg
dict_lexicons, dict_binaries = {}, {} # Notice that we already put the rule of the start node in
# Chomsky normal form
dict_pcfg = {'lexical' : dict_lexicons, 'binary' : dict_binaries}
# Loop over the data
for string in data:
t = Tree.fromstring(ignore_functional_labels(string)) # Ignore the functional labels (see the doc of ignore_functional_labels)
t.chomsky_normal_form(horzMarkov=2) # Convert the tree to Chomsky normal form
t.collapse_unary(collapsePOS=True, collapseRoot=True)
rules = t.productions() # Get the rules
for rule in rules: # We start by counting the rules in data
nature, lhs, rhs = express_node(rule)
if lhs in dict_pcfg[nature]:
if rhs in dict_pcfg[nature][lhs]:
dict_pcfg[nature][lhs][rhs] += 1
else:
dict_pcfg[nature][lhs][rhs] = 1
else:
dict_pcfg[nature][lhs] = {rhs : 1}
dict_normalized = {}
for nature in dict_pcfg:
for lhs in dict_pcfg[nature]:
if lhs in dict_normalized:
dict_normalized[lhs] += sum(dict_pcfg[nature][lhs].values())
else:
dict_normalized[lhs] = sum(dict_pcfg[nature][lhs].values())
for nature in dict_pcfg:
for lhs in dict_pcfg[nature]:
dict_pcfg[nature][lhs] = dict((key, value/dict_normalized[lhs]) for key, value in dict_pcfg[nature][lhs].items())
dict_probas = {'lexical' : {}, 'unary' : {}, 'binary' : {}} # Initialize dict_probas
for nature in dict_pcfg:
for lhs in dict_pcfg[nature]:
for node in dict_pcfg[nature][lhs]:
if node in dict_probas[nature]:
dict_probas[nature][node][lhs] = math.log(dict_pcfg[nature][lhs][node])
else:
dict_probas[nature][node] = {lhs : math.log(dict_pcfg[nature][lhs][node])}
return dict_pcfg, dict_probas
def cyk(sentence):
"""
Description
----------------
CYK parsing algorithm.
Parameters
----------------
sentence : List of strings describing a spaced-tokens sentence.
Returns
----------------
scores, back : Lists of lists containing dictionnaries:
- scores : scores of non terminals.
- back : back tracking container.
"""
n = len(sentence) + 1
k = len(non_terminals)
scores = [[{} for j in range(n)] for l in range(n)]
back = [[[None for i in range(k)] for j in range(n)] for l in range(n)]
Bs_scores, Cs_scores = [[set() for j in range(n)] for l in range(n)], [[set() for j in range(n)] for l in range(n)]
for i in range(0, n-1):
word = sentence[i]
if word in dict_probas['lexical'].keys():
for A in dict_probas['lexical'][word]:
scores[i][i+1][A] = dict_probas['lexical'][word][A]
if A in B_binary:
Bs_scores[i][i+1].add(A)
if A in C_binary:
Cs_scores[i][i+1].add(A)
else:
print(word + " : isn't in terminals")
return scores, back
for span in range(2, n):
start_time_binary = time()
for begin in range(0, n-span):
end = begin + span
start_time_binary = time()
for split in range(begin+1, end):
Bs = Bs_scores[begin][split].intersection(B_binary)
Cs = Cs_scores[split][end].intersection(C_binary)
for B, C in set_binary.intersection(set(product(Bs, Cs))):
score_B, score_C = scores[begin][split].get(B, -np.inf), scores[split][end].get(C, -np.inf)
for A in dict_probas['binary'][(B, C)]:
prob = score_B + score_C + dict_probas['binary'][(B, C)][A]
if prob > scores[begin][end].get(A, -np.inf):
scores[begin][end][A] = prob
back[begin][end][dict_non_terminals_indices[A]] = (split, B, C)
if A in B_binary:
Bs_scores[begin][end].add(A)
if A in C_binary:
Cs_scores[begin][end].add(A)
return scores, back
def not_in_grammar(sentence):
"""
Description
----------------
If a sentence is gramatically incorrect, Return its parse tree in a way that allows it to be evaluated with the original parse giving 0 with any evaluation metric.
Parameters
----------------
sentence : List of strings containing the space-tokenized sentence
Returns
----------------
Not_in_Grammar parse tree
"""
string = '( (Not_in_Grammar '
for i in range(len(sentence)-1):
string += '(Not_in_Grammar ' + sentence[i] + ')'
string += '(Not_in_Grammar ' + sentence[-1] + ')))'
return string
def build_parentheses(back_track, scores, sentence):
"""
Description
---------------
Build the parse tree from tha back_track return of CYK algorithm as a string with parentheses. Then if we want to get the parse
in a tree form, we can simply use function Tree.from_string of nltk package.
Parameters
---------------
back_track, scores : Outputs of function cyk.
sentence : List of strings containing the space-tokenized sentence.
Returns
---------------
String, the string form with parentheses of the parse tree.
"""
q = queue.LifoQueue()
begin = 0
end = len(back_track[0]) - 1
starts_scores = []
for start in starts:
starts_scores.append((scores[begin][end].get(start,-np.inf), start))
starts_scores.sort(reverse=True)
if starts_scores[0][0] == -np.inf:
return not_in_grammar(sentence)
sent = starts_scores[0][1]
string = '('
q.put((None, sent, 'start', 1, [begin, end]))
while not q.empty():
split, symbol, status, depth, border = q.get() # border is begin for left and end for right
string += ' (' + symbol
if status == 'left':
border = [border[0], split]
children = back_track[border[0]][border[1]][dict_non_terminals_indices[symbol]]
elif status == 'right':
border = [split, border[1]]
children = back_track[border[0]][border[1]][dict_non_terminals_indices[symbol]]
elif status == 'start':
children = back_track[border[0]][border[1]][dict_non_terminals_indices[symbol]]
if children is not None:
if isinstance(children, grammar.Nonterminal):
node = (split, children, status, depth+1, border)
q.put(node)
elif len(children) == 3:
split, l_child, r_child = children
l_node, r_node = (split, l_child, 'left', 0, border), (split, r_child, 'right', depth+1, border)
q.put(r_node)
q.put(l_node)
else:
depth += 1
word = sentence[border[0]:border[1]][0]
string += ' ' + word + ')'*depth
return string
def score(true_parse, proposed_parse):
"""
Description
-----------------
Evaluate parses with the whole non terminals precision and recall, and on only POS tags
Parameters
-----------------
true_parse, proposed_parse : Bracketed strings, the true and proposed parse trees.
Returns
-----------------
parse_recall, parse_precision, pos_recall, pos_precision
"""
true_parse = true_parse[2:-1]
proposed_parse= proposed_parse[2:-1]
gold_tree = parser.create_from_bracket_string(true_parse)
test_tree = parser.create_from_bracket_string(proposed_parse)
# Compute recall and precision for POS tags
y_true = np.array(gold_tree.poss)
y_pred = np.array(test_tree.poss)
y_pred = (y_true == y_pred).astype(int)
y_true = np.ones(len(y_true)).astype(int)
(POS_precision, POS_recall, POS_f_score, beta) = precision_recall_fscore_support(y_true,y_pred, labels=[1])
# Compute recall and precision for the whole parse
thescorer = scorer.Scorer()
result = thescorer.score_trees(gold_tree, test_tree)
return result.recall*100, result.prec*100, POS_recall[0]*100, POS_precision[0]*100
def levenshtein(s1, s2):
"""
Description
---------------
Computes the Levenshtein distance between two strings.
Parameters
---------------
s1, s2 : The two strings we want to compare.
Returns
---------------
Float, the Levenshtein distance between s1 and s2
"""
n1, n2 = len(s1), len(s2)
s1, s2 = s1.lower(), s2.lower()
lev = np.zeros((n1 + 1, n2 + 1))
for i in range(n1 + 1):
lev[i, 0] = i
for j in range(n2 + 1):
lev[0, j] = j
for i in range(1, n1 + 1):
for j in range(1, n2 + 1):
if s1[i-1] == s2[j-1]:
lev[i, j] = min(lev[i-1, j] + 1, lev[i, j-1] + 1, lev[i-1, j-1])
else:
lev[i, j] = min(lev[i-1, j] + 1, lev[i, j-1] + 1, lev[i-1, j-1] + 1)
return lev[n1, n2]
def damerau_levenshtein(s1, s2):
"""
Description
---------------
Computes the Damerau-Levenshtein distance between two strings.
Parameters
---------------
s1, s2 : The two strings we want to compare.
Returns
---------------
Float, the Damerau-Levenshtein distance between s1 and s2
"""
s1, s2 = s1.lower(), s2.lower()
n1, n2 = len(s1), len(s2)
alphabet = ['!', '"', '#', '$', '%', '&', '(', ')', "'", '*', '+',
',', '-', '.', '/', ':', ';', '<', '=', '>', '?', '@',
'[', ']', '^', '_', '`', '{', '|', '}', '~', ' ', '°',
'é', 'è', 'ë', 'ê', 'à', 'á', 'â', 'ä', 'ç', 'î', 'ï',
'ô', 'ó', 'ö', 'ù', 'û', 'ß', '©', '±', 'µ', '½'] + [str(i) for i in range(10)] + ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
for char in s1 + s2:
if char not in alphabet:
return 10
dict_alphabet_indices = {char:index for (index, char) in zip(range(len(alphabet)), alphabet)}
da, d = np.zeros(len(alphabet)).astype(np.int8), np.zeros((n1 + 2, n2 + 2)).astype(np.int8)
maxdist = n1 + n2
d[0, 0] = maxdist
for i in range(n1 + 1):
d[i+1, 0] = maxdist
d[i+1, 1] = i
for j in range(n2 + 1):
d[0, j+1] = maxdist
d[1, j+1] = j
for i in range(1, n1 + 1):
db = 0
for j in range(1, n2 + 1):
k = da[dict_alphabet_indices[s2[j-1]]]
l = db
if s1[i-1] == s2[j-1]:
cost = 0
db = j
else:
cost = 1
d[i+1, j+1] = min(d[i, j] + cost, d[i+1, j] + 1,
d[i, j+1] + 1, d[k, l] + (i-k-1)+1+(j-l-1))
da[dict_alphabet_indices[s1[i-1]]] = i
return d[-1, -1]
def unigram(data):
"""
Description
---------------
Compute a unigram model from the corpus data.
Parameters
---------------
data : List of bracketed strings
Returns
---------------
np.array of shape (#words_in_data,) containing the probabilities p(word).
"""
probas = np.zeros(len(terminals))
for bracketed in data:
t = Tree.fromstring(bracketed)
for word in t.leaves():
probas[dict_terminals_indices[word]] += 1
return probas/probas.sum()
def bigram(data):
"""
Description
---------------
Compute a bigram model from the corpus data.
Parameters
---------------
data : List of bracketed strings
Returns
---------------
np.array of shape (#words_in_data, #words_in_data) containing the probabilities p(word_current|word_previous).
"""
probas = np.ones((len(terminals), len(terminals)))
for bracketed in data:
t = Tree.fromstring(bracketed)
sentence = t.leaves()
if len(sentence) >= 2:
for i in range(1, len(sentence)):
index_1 = dict_terminals_indices[sentence[i - 1]] # The previous word in the sequene.
index_2 = dict_terminals_indices[sentence[i]] # The current word in the sequene.
probas[index_1, index_2] += 1
else:
continue
return probas/((probas.sum(axis = 1).reshape(-1, 1)))
def closest_formal(s, terminals, n_words = 5, swap = False):
"""
Description
---------------
Get a number of close terminals w.r.t Damerau-Levenshtein (or Levenshtein) to the word s.
Parameters
---------------
s : String, the oov word
terminals : Set of words we have in our corpus.
n_words : Int, the number of words to return
swap : Boolean, True : Use Damerau-Levenshtein distance.
False : Use Levenshtein distance
Returns
---------------
Dictionnary of the closest words.
keys : words in terminals.
values : distance(s, word)
"""
if swap:
fun = lambda word : damerau_levenshtein(s, word)
else:
fun = lambda word : levenshtein(s, word)
return {word : score for score, word in sorted(zip(list(map(fun, terminals)), terminals))[:n_words]}
def closest_embedding(s, terminals, n_words = 10):
"""
Description
---------------
Get the closest terminals to the word s w.r.t to the cosine distance of their embeddings.
Parameters
---------------
s : String, oov word
terminals : Set of words we have in our corpus.
n_words : Int, number of closest words to s.
Returns
---------------
Dictionnary of the closest words.
keys : words in terminals.
values : cosine_distance(s, word)
"""
fun = lambda word : distance.cosine(dict_words_embeddings[s], dict_terminals_embeddings[word])
return {score_word[1] : score_word[0] for score_word in sorted(zip(map(fun, terminals_embedded), terminals_embedded))[:n_words]}
def choose_words(sentence, terminals, probas_unigram, probas_bigram, swap = True, n_words = 10, n_words_formal = 5, lambd = 0.8):
"""
Description
---------------
Given a word s of the sentence, start by checking if it is in the training lexique, if not then choose a similar word
from the lexique using the formal and embedding similarities and a bigram language model trained on the training corpus.
Parameters
---------------
sentence : List of strings containing tokens of a sentence.
terminals : Set of all words in the training corpus.
probas_unigram : 1D np.array of shape (len(terminals),), unigram model trained on the training corpus.
probas_bigram : 2D np.array of shape (len(terminals), len(terminals)), bigram model trained on the training corpus.
n_words, swap : Parameters of closest_formal (see its doc).
lambd : Float in [0, 1], the interpolation parameter between bigram and unigram models.
Returns
---------------
List of strings containing the closest words to the sentence from the training corpus.
"""
log_proba = 0
sent = sentence.copy()
for i in range(len(sent)):
s = sent[i]
if s in terminals:
log_proba += math.log(probas_unigram[dict_terminals_indices[s]]) if i==0 else math.log(probas_bigram[dict_terminals_indices[sent[i-1]], dict_terminals_indices[s]])
continue
else:
words_formal = closest_formal(s, terminals, n_words_formal, swap)
words_embedding = closest_embedding(s, terminals, n_words) if s in dict_words_embeddings else {}
words_proposed = set(words_formal.keys()) | set(words_embedding.keys()) # Set of the proposed words
if i == 0:
scores = []
for word in words_proposed:
unigram = math.log(probas_unigram[dict_terminals_indices[word]])
scores.append((unigram, word))
else:
scores = []
for word in words_proposed:
bigram = math.log(lambd*probas_bigram[dict_terminals_indices[sent[i-1]], dict_terminals_indices[word]] + (1-lambd)*probas_unigram[dict_terminals_indices[word]])
score = log_proba + bigram
scores.append((score, word))
scores.sort(reverse = True)
sent[i] = scores[0][1]
log_proba += scores[0][0]
sent = [word.lower() for word in sent]
return sent
def parse(sentence, n_words_formal=2, n_words=20, swap=False, lambd=0.8):
"""
Description
---------------
Parse sentence and return its parse tree as a bracketed string.
Parameters
---------------
sentence : String, the space-tokenized sentence.
swap : Boolean,
- True : Use Damerau-Levenstein distance.
- False: Use Levenstein distance.
n_words_formal : Int, number of closest words w.r.t to the form.
n_words : Int, number of closest words w.r.t to the embedding.
lambd : Float in [0, 1], the interpolation parameter between bigram and unigram models.
Returns
---------------
String, the bracketed string containing the parse tree.
"""
sentence = sentence.split(' ')
sentence_oov = choose_words(sentence, terminals, probas_unigram, probas_bigram, n_words_formal=n_words_formal,
n_words=n_words, swap=swap, lambd=lambd)
scores, back = cyk(sentence_oov)
bracketed = build_parentheses(back, scores, sentence)
t_test = Tree.fromstring(bracketed)
t_test.un_chomsky_normal_form()
return " ".join(str(t_test).split())
if __name__ == '__main__':
argparser = argparse.ArgumentParser(description='Parse options')
argparser.add_argument('--data_train', type=str, default='sequoia-corpus+fct.mrg_strict', help="File containing training data.")
argparser.add_argument('--data_test', type=str, default='test_data', help="File containing test data.")
argparser.add_argument('--train_eval', action='store_true', help="Whether to split the data into train-eval datasets or train on the whole training set.")
argparser.add_argument('--train_size', type=float, default=0.9, help="Ratio of the data to train on, used only with train_eval option.")
argparser.add_argument('--output_name', type=str, default='output_parse',help="Name of the output parse file.")
argparser.add_argument('--n_words_formal', type=int, default=2, help="See choose_words doc.")
argparser.add_argument('--n_words', type=int, default=20, help="See choose_words doc.")
argparser.add_argument('--swap', action='store_true', help="Use Damerau-Levenstein distance when true and Levenstein distance otherwise.")
argparser.add_argument('--lambd', type=float, default=0.8, help="Float in [0, 1], the interpolation parameter between bigram and unigram models.")
args = argparser.parse_args()
# Load the training data
with open(args.data_train, 'r', encoding = 'utf-8') as file:
data = file.read().splitlines()
file.close()
if args.train_eval:
n_lines = int(args.train_size*len(data))
data_test = data[n_lines:]
data = data[:n_lines]
# Prepare evaluation data, only keep the space-tokenized sentence from the bracketed parse.
data_test_sentences = []
for bracketed in data_test:
t = Tree.fromstring(bracketed)
data_test_sentences.append(" ".join(t.leaves()))
# Describe the grammar of the training data
non_terminals, pos_tags, terminals, binaries, starts = grammar_infos(data)
dict_non_terminals_indices = {non_terminal : index for index, non_terminal in enumerate(non_terminals)}
dict_indices_non_terminals = {index : non_terminal for non_terminal, index in dict_non_terminals_indices.items()}
dict_pos_indices = {pos : index for index, pos in enumerate(pos_tags)}
dict_indices_pos = {index : pos for pos, index in dict_pos_indices.items()}
dict_terminals_indices = {terminal : index for index, terminal in enumerate(terminals)}
dict_indices_terminals = {index : terminal for terminal, index in dict_terminals_indices.items()}
dict_binaries_indices = {binary : index for index, binary in enumerate(binaries)}
dict_indices_terminals = {index : binary for binary, index in dict_binaries_indices.items()}
dict_starts_indices = {binary : index for index, binary in enumerate(starts)}
dict_indices_starts = {index : binary for binary, index in dict_starts_indices.items()}
# Create pcfg
dict_pcfg, dict_probas = pcfg(data)
print('Creating the PCFG : Finished')
# Sets of left hand nodes and right hand nodes in binary rules.
B_binary, C_binary = set([binary[0] for binary in dict_probas['binary'].keys()]), set([binary[1] for binary in dict_probas['binary'].keys()])
set_binary = set(dict_probas['binary'].keys())
# Load polyglot embeddings.
words, embeddings = pkl.load(open('polyglot-fr.pkl', 'rb'), encoding = 'latin')
dict_words_embeddings = dict((word, embedding) for word, embedding in zip(words, embeddings)) # Dictionnary mapping polyglot words to embeddings
words_polyglot = set(words) # Set of all the words in polyglot dataset.
dict_terminals_embeddings = {terminal : embedding for (terminal, embedding) in dict_words_embeddings.items() if terminal in terminals} # dictionnary mapping terminals to embeddings
terminals_embedded = set(dict_terminals_embeddings.keys()) # Set of all terminals having an embedding.
del embeddings
# Define language model.
probas_unigram, probas_bigram = unigram(data), bigram(data)
print('Defining the language model : Finished')
print('Starting the evaluation')
if args.train_eval:
parses = []
start_time = time()
i=0
for sentence in data_test_sentences:
parses.append(parse(sentence, n_words_formal=args.n_words_formal, n_words=args.n_words, swap=args.swap, lambd=args.lambd))
i+=1
if i%50 == 0:
print('Number of treated sentences %d' %i)
print('evaluation time : %.2f s' %(time() - start_time))
parse_recalls, parse_precisions, pos_recalls, pos_precisions = [], [], [], []
for i in range(len(parses)):
parse_recall, parse_precision, pos_recall, pos_precision = score('( ' + ignore_functional_labels(data_test[i]) + ')', parses[i])
parse_recalls.append(parse_recall)
parse_precisions.append(parse_precision)
pos_recalls.append(pos_recall)
pos_precisions.append(pos_precision)
print('parse recalls mean : %.2f' %np.mean(parse_recalls))
print('parse precisions mean : %.2f' %np.mean(parse_precisions))
print('pos recalls mean : %.2f' %np.mean(pos_recalls))
print('pos precisions mean : %.2f' %np.mean(pos_precisions))
file = open(args.output_name, 'w', encoding='utf-8')
for i in range(len(parses)-1):
file.write(parses[i]+'\n')
file.write(parses[-1])
file.close()
else:
with open(args.data_test, 'r', encoding = 'utf-8') as file:
data_test_sentences = file.read().splitlines()
file.close()
parses = []
start_time = time()
i=0
for sentence in data_test_sentences:
parses.append(parse(sentence, n_words_formal=args.n_words_formal, n_words=args.n_words, swap=args.swap, lambd=args.lambd))
i+=1
if i%50 == 0:
print('Number of treated sentences %d' %i)
print('test time : %.2f' %(time() - start_time))
file = open(args.output_name, 'w', encoding='utf-8')
for i in range(len(parses)-1):
file.write(parses[i]+'\n')
file.write(parses[-1])
file.close()