Skip to content

Latest commit

 

History

History
186 lines (132 loc) · 6.51 KB

0135.分发糖果.md

File metadata and controls

186 lines (132 loc) · 6.51 KB

欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

135. 分发糖果

链接:https://leetcode-cn.com/problems/candy/

老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。

你需要按照以下要求,帮助老师给这些孩子分发糖果:

  • 每个孩子至少分配到 1 个糖果。
  • 相邻的孩子中,评分高的孩子必须获得更多的糖果。

那么这样下来,老师至少需要准备多少颗糖果呢?

示例 1: 输入: [1,0,2] 输出: 5 解释: 你可以分别给这三个孩子分发 2、1、2 颗糖果。

示例 2: 输入: [1,2,2] 输出: 4 解释: 你可以分别给这三个孩子分发 1、2、1 颗糖果。 第三个孩子只得到 1 颗糖果,这已满足上述两个条件。

思路

这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼

先确定右边评分大于左边的情况(也就是从前向后遍历)

此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果

局部最优可以推出全局最优。

如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1

代码如下:

// 从前向后
for (int i = 1; i < ratings.size(); i++) {
    if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
}

如图:

135.分发糖果

再确定左孩子大于右孩子的情况(从后向前遍历)

遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?

因为如果从前向后遍历,根据 ratings[i + 1] 来确定 ratings[i] 对应的糖果,那么每次都不能利用上前一次的比较结果了。

所以确定左孩子大于右孩子的情况一定要从后向前遍历!

如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。

那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量即大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果。

局部最优可以推出全局最优。

所以就取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多

如图:

135.分发糖果1

所以该过程代码如下:

// 从后向前
for (int i = ratings.size() - 2; i >= 0; i--) {
    if (ratings[i] > ratings[i + 1] ) {
        candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
    }
}

整体代码如下:

class Solution {
public:
    int candy(vector<int>& ratings) {
        vector<int> candyVec(ratings.size(), 1);
        // 从前向后
        for (int i = 1; i < ratings.size(); i++) {
            if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
        }
        // 从后向前
        for (int i = ratings.size() - 2; i >= 0; i--) {
            if (ratings[i] > ratings[i + 1] ) {
                candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
            }
        }
        // 统计结果
        int result = 0;
        for (int i = 0; i < candyVec.size(); i++) result += candyVec[i];
        return result;
    }
};

总结

这在leetcode上是一道困难的题目,其难点就在于贪心的策略,如果在考虑局部的时候想两边兼顾,就会顾此失彼。

那么本题我采用了两次贪心的策略:

  • 一次是从左到右遍历,只比较右边孩子评分比左边大的情况。
  • 一次是从右到左遍历,只比较左边孩子评分比右边大的情况。

这样从局部最优推出了全局最优,即:相邻的孩子中,评分高的孩子获得更多的糖果。

其他语言版本

Java:

class Solution {
    public int candy(int[] ratings) {
        int[] candy = new int[ratings.length];
        for (int i = 0; i < candy.length; i++) {
            candy[i] = 1;
        }

        for (int i = 1; i < ratings.length; i++) {
            if (ratings[i] > ratings[i - 1]) {
                candy[i] = candy[i - 1] + 1;
            }
        }

        for (int i = ratings.length - 2; i >= 0; i--) {
            if (ratings[i] > ratings[i + 1]) {
                candy[i] = Math.max(candy[i],candy[i + 1] + 1);
            }
        }

        int count = 0;
        for (int i = 0; i < candy.length; i++) {
            count += candy[i];
        }

        return count;
    }
}

Python:

class Solution:
    def candy(self, ratings: List[int]) -> int:
        candyVec = [1] * len(ratings)
        for i in range(1, len(ratings)):
            if ratings[i] > ratings[i - 1]:
                candyVec[i] = candyVec[i - 1] + 1
        for j in range(len(ratings) - 2, -1, -1):
            if ratings[j] > ratings[j + 1]:
                candyVec[j] = max(candyVec[j], candyVec[j + 1] + 1)
        return sum(candyVec)

Go: