-
Notifications
You must be signed in to change notification settings - Fork 3
/
completions.py
436 lines (365 loc) · 20.7 KB
/
completions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import Any, List, Union, Iterable, Optional, cast
from typing_extensions import Literal
import httpx
from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from ..._utils import (
is_given,
maybe_transform,
strip_not_given,
async_maybe_transform,
)
from ..._compat import cached_property
from ..._resource import SyncAPIResource, AsyncAPIResource
from ..._response import (
to_raw_response_wrapper,
to_streamed_response_wrapper,
async_to_raw_response_wrapper,
async_to_streamed_response_wrapper,
)
from ..._streaming import Stream, AsyncStream
from ...types.chat import completion_create_params
from ..._base_client import make_request_options
from ...types.chat.chat_completion import ChatCompletion
__all__ = ["CompletionsResource", "AsyncCompletionsResource"]
class CompletionsResource(SyncAPIResource):
@cached_property
def with_raw_response(self) -> CompletionsResourceWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/Cerebras/cerebras-cloud-sdk-python#accessing-raw-response-data-eg-headers
"""
return CompletionsResourceWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> CompletionsResourceWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/Cerebras/cerebras-cloud-sdk-python#with_streaming_response
"""
return CompletionsResourceWithStreamingResponse(self)
def create(
self,
*,
messages: Iterable[completion_create_params.Message],
model: str,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
logit_bias: Optional[object] | NotGiven = NOT_GIVEN,
logprobs: Optional[bool] | NotGiven = NOT_GIVEN,
max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
min_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN,
min_tokens: Optional[int] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
response_format: Optional[completion_create_params.ResponseFormat] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN,
stop: Union[str, List[str], None] | NotGiven = NOT_GIVEN,
stream: Optional[bool] | NotGiven = NOT_GIVEN,
stream_options: Optional[completion_create_params.StreamOptions] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
tool_choice: Optional[completion_create_params.ToolChoice] | NotGiven = NOT_GIVEN,
tools: Optional[Iterable[completion_create_params.Tool]] | NotGiven = NOT_GIVEN,
top_logprobs: Optional[int] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: Optional[str] | NotGiven = NOT_GIVEN,
x_amz_cf_id: str | NotGiven = NOT_GIVEN,
x_delay_time: float | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ChatCompletion | Stream[ChatCompletion]:
"""Chat
Args:
frequency_penalty: Number between -2.0 and 2.0.
Positive values penalize new tokens based on their
existing frequency in the text so far, decreasing the model's likelihood to
repeat the same line verbatim.
logit_bias: Modify the likelihood of specified tokens appearing in the completion.
Accepts a JSON object that maps tokens (specified by their token ID in the
tokenizer) to an associated bias value from -100 to 100. Mathematically, the
bias is added to the logits generated by the model prior to sampling. The exact
effect will vary per model, but values between -1 and 1 should decrease or
increase likelihood of selection; values like -100 or 100 should result in a ban
or exclusive selection of the relevant token.
logprobs: Whether to return log probabilities of the output tokens or not. If true,
returns the log probabilities of each output token returned in the content of
message.
max_completion_tokens: An upper bound for the number of tokens that can be generated for a completion,
including visible output tokens and reasoning tokens.
max_tokens: The maximum number of tokens that can be generated in the chat completion. The
total length of input tokens and generated tokens is limited by the model's
context length. This value is now deprecated in favor of max_completion_tokens.
min_completion_tokens: The minimum number of tokens to generate for a completion. If not specified or
set to 0, the model will generate as many tokens as it deems necessary. Setting
to -1 sets to max sequence length.
min_tokens: The minimum number of tokens to generate for a completion. If not specified or
set to 0, the model will generate as many tokens as it deems necessary. Setting
to -1 sets to max sequence length.
n: How many chat completion choices to generate for each input message. Note that
you will be charged based on the number of generated tokens across all of the
choices. Keep n as 1 to minimize costs.
presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
whether they appear in the text so far, increasing the model's likelihood to
talk about new topics.
seed: If specified, our system will make a best effort to sample deterministically,
such that repeated requests with the same `seed` and parameters should return
the same result. Determinism is not guaranteed.
stop: Up to 4 sequences where the API will stop generating further tokens. The
returned text will not contain the stop sequence.
temperature: What sampling temperature to use, between 0 and 1.5. Higher values like 0.8 will
make the output more random, while lower values like 0.2 will make it more
focused and deterministic. We generally recommend altering this or `top_p` but
not both.
top_logprobs: An integer between 0 and 20 specifying the number of most likely tokens to
return at each token position, each with an associated log probability. logprobs
must be set to true if this parameter is used.
top_p: An alternative to sampling with temperature, called nucleus sampling, where the
model considers the results of the tokens with top_p probability mass. So 0.1
means only the tokens comprising the top 10% probability mass are considered. We
generally recommend altering this or `temperature` but not both.
user: A unique identifier representing your end-user, which can help Cerebras to
monitor and detect abuse.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {
**strip_not_given(
{
"X-Amz-Cf-Id": x_amz_cf_id,
"X-delay-time": str(x_delay_time) if is_given(x_delay_time) else NOT_GIVEN,
}
),
**(extra_headers or {}),
}
return cast(
ChatCompletion,
self._post(
"/v1/chat/completions",
body=maybe_transform(
{
"messages": messages,
"model": model,
"frequency_penalty": frequency_penalty,
"logit_bias": logit_bias,
"logprobs": logprobs,
"max_completion_tokens": max_completion_tokens,
"max_tokens": max_tokens,
"min_completion_tokens": min_completion_tokens,
"min_tokens": min_tokens,
"n": n,
"parallel_tool_calls": parallel_tool_calls,
"presence_penalty": presence_penalty,
"response_format": response_format,
"seed": seed,
"service_tier": service_tier,
"stop": stop,
"stream": stream,
"stream_options": stream_options,
"temperature": temperature,
"tool_choice": tool_choice,
"tools": tools,
"top_logprobs": top_logprobs,
"top_p": top_p,
"user": user,
},
completion_create_params.CompletionCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=cast(Any, ChatCompletion), # Union types cannot be passed in as arguments in the type system
stream=stream or False,
stream_cls=Stream[ChatCompletion],
),
)
class AsyncCompletionsResource(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncCompletionsResourceWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/Cerebras/cerebras-cloud-sdk-python#accessing-raw-response-data-eg-headers
"""
return AsyncCompletionsResourceWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncCompletionsResourceWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/Cerebras/cerebras-cloud-sdk-python#with_streaming_response
"""
return AsyncCompletionsResourceWithStreamingResponse(self)
async def create(
self,
*,
messages: Iterable[completion_create_params.Message],
model: str,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
logit_bias: Optional[object] | NotGiven = NOT_GIVEN,
logprobs: Optional[bool] | NotGiven = NOT_GIVEN,
max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
min_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN,
min_tokens: Optional[int] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
response_format: Optional[completion_create_params.ResponseFormat] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN,
stop: Union[str, List[str], None] | NotGiven = NOT_GIVEN,
stream: Optional[bool] | NotGiven = NOT_GIVEN,
stream_options: Optional[completion_create_params.StreamOptions] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
tool_choice: Optional[completion_create_params.ToolChoice] | NotGiven = NOT_GIVEN,
tools: Optional[Iterable[completion_create_params.Tool]] | NotGiven = NOT_GIVEN,
top_logprobs: Optional[int] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: Optional[str] | NotGiven = NOT_GIVEN,
x_amz_cf_id: str | NotGiven = NOT_GIVEN,
x_delay_time: float | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ChatCompletion | AsyncStream[ChatCompletion]:
"""Chat
Args:
frequency_penalty: Number between -2.0 and 2.0.
Positive values penalize new tokens based on their
existing frequency in the text so far, decreasing the model's likelihood to
repeat the same line verbatim.
logit_bias: Modify the likelihood of specified tokens appearing in the completion.
Accepts a JSON object that maps tokens (specified by their token ID in the
tokenizer) to an associated bias value from -100 to 100. Mathematically, the
bias is added to the logits generated by the model prior to sampling. The exact
effect will vary per model, but values between -1 and 1 should decrease or
increase likelihood of selection; values like -100 or 100 should result in a ban
or exclusive selection of the relevant token.
logprobs: Whether to return log probabilities of the output tokens or not. If true,
returns the log probabilities of each output token returned in the content of
message.
max_completion_tokens: An upper bound for the number of tokens that can be generated for a completion,
including visible output tokens and reasoning tokens.
max_tokens: The maximum number of tokens that can be generated in the chat completion. The
total length of input tokens and generated tokens is limited by the model's
context length. This value is now deprecated in favor of max_completion_tokens.
min_completion_tokens: The minimum number of tokens to generate for a completion. If not specified or
set to 0, the model will generate as many tokens as it deems necessary. Setting
to -1 sets to max sequence length.
min_tokens: The minimum number of tokens to generate for a completion. If not specified or
set to 0, the model will generate as many tokens as it deems necessary. Setting
to -1 sets to max sequence length.
n: How many chat completion choices to generate for each input message. Note that
you will be charged based on the number of generated tokens across all of the
choices. Keep n as 1 to minimize costs.
presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
whether they appear in the text so far, increasing the model's likelihood to
talk about new topics.
seed: If specified, our system will make a best effort to sample deterministically,
such that repeated requests with the same `seed` and parameters should return
the same result. Determinism is not guaranteed.
stop: Up to 4 sequences where the API will stop generating further tokens. The
returned text will not contain the stop sequence.
temperature: What sampling temperature to use, between 0 and 1.5. Higher values like 0.8 will
make the output more random, while lower values like 0.2 will make it more
focused and deterministic. We generally recommend altering this or `top_p` but
not both.
top_logprobs: An integer between 0 and 20 specifying the number of most likely tokens to
return at each token position, each with an associated log probability. logprobs
must be set to true if this parameter is used.
top_p: An alternative to sampling with temperature, called nucleus sampling, where the
model considers the results of the tokens with top_p probability mass. So 0.1
means only the tokens comprising the top 10% probability mass are considered. We
generally recommend altering this or `temperature` but not both.
user: A unique identifier representing your end-user, which can help Cerebras to
monitor and detect abuse.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {
**strip_not_given(
{
"X-Amz-Cf-Id": x_amz_cf_id,
"X-delay-time": str(x_delay_time) if is_given(x_delay_time) else NOT_GIVEN,
}
),
**(extra_headers or {}),
}
return cast(
ChatCompletion,
await self._post(
"/v1/chat/completions",
body=await async_maybe_transform(
{
"messages": messages,
"model": model,
"frequency_penalty": frequency_penalty,
"logit_bias": logit_bias,
"logprobs": logprobs,
"max_completion_tokens": max_completion_tokens,
"max_tokens": max_tokens,
"min_completion_tokens": min_completion_tokens,
"min_tokens": min_tokens,
"n": n,
"parallel_tool_calls": parallel_tool_calls,
"presence_penalty": presence_penalty,
"response_format": response_format,
"seed": seed,
"service_tier": service_tier,
"stop": stop,
"stream": stream,
"stream_options": stream_options,
"temperature": temperature,
"tool_choice": tool_choice,
"tools": tools,
"top_logprobs": top_logprobs,
"top_p": top_p,
"user": user,
},
completion_create_params.CompletionCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=cast(Any, ChatCompletion), # Union types cannot be passed in as arguments in the type system
stream=stream or False,
stream_cls=AsyncStream[ChatCompletion],
),
)
class CompletionsResourceWithRawResponse:
def __init__(self, completions: CompletionsResource) -> None:
self._completions = completions
self.create = to_raw_response_wrapper(
completions.create,
)
class AsyncCompletionsResourceWithRawResponse:
def __init__(self, completions: AsyncCompletionsResource) -> None:
self._completions = completions
self.create = async_to_raw_response_wrapper(
completions.create,
)
class CompletionsResourceWithStreamingResponse:
def __init__(self, completions: CompletionsResource) -> None:
self._completions = completions
self.create = to_streamed_response_wrapper(
completions.create,
)
class AsyncCompletionsResourceWithStreamingResponse:
def __init__(self, completions: AsyncCompletionsResource) -> None:
self._completions = completions
self.create = async_to_streamed_response_wrapper(
completions.create,
)