forked from kairess/eye_blink_detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
84 lines (57 loc) · 2.48 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import cv2, dlib
import numpy as np
from imutils import face_utils
from keras.models import load_model
IMG_SIZE = (34, 26)
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
model = load_model('models/2018_12_17_22_58_35.h5')
model.summary()
def crop_eye(img, eye_points):
x1, y1 = np.amin(eye_points, axis=0)
x2, y2 = np.amax(eye_points, axis=0)
cx, cy = (x1 + x2) / 2, (y1 + y2) / 2
w = (x2 - x1) * 1.2
h = w * IMG_SIZE[1] / IMG_SIZE[0]
margin_x, margin_y = w / 2, h / 2
min_x, min_y = int(cx - margin_x), int(cy - margin_y)
max_x, max_y = int(cx + margin_x), int(cy + margin_y)
eye_rect = np.rint([min_x, min_y, max_x, max_y]).astype(np.int)
eye_img = gray[eye_rect[1]:eye_rect[3], eye_rect[0]:eye_rect[2]]
return eye_img, eye_rect
# main
cap = cv2.VideoCapture(0)
while cap.isOpened():
ret, img_ori = cap.read()
if not ret:
break
img_ori = cv2.resize(img_ori, dsize=(0, 0), fx=0.5, fy=0.5)
img = img_ori.copy()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = detector(gray)
for face in faces:
shapes = predictor(gray, face)
shapes = face_utils.shape_to_np(shapes)
eye_img_l, eye_rect_l = crop_eye(gray, eye_points=shapes[36:42])
eye_img_r, eye_rect_r = crop_eye(gray, eye_points=shapes[42:48])
eye_img_l = cv2.resize(eye_img_l, dsize=IMG_SIZE)
eye_img_r = cv2.resize(eye_img_r, dsize=IMG_SIZE)
eye_img_r = cv2.flip(eye_img_r, flipCode=1)
cv2.imshow('l', eye_img_l)
cv2.imshow('r', eye_img_r)
eye_input_l = eye_img_l.copy().reshape((1, IMG_SIZE[1], IMG_SIZE[0], 1)).astype(np.float32) / 255.
eye_input_r = eye_img_r.copy().reshape((1, IMG_SIZE[1], IMG_SIZE[0], 1)).astype(np.float32) / 255.
pred_l = model.predict(eye_input_l)
pred_r = model.predict(eye_input_r)
# visualize
state_l = 'O %.1f' if pred_l > 0.1 else '- %.1f'
state_r = 'O %.1f' if pred_r > 0.1 else '- %.1f'
state_l = state_l % pred_l
state_r = state_r % pred_r
cv2.rectangle(img, pt1=tuple(eye_rect_l[0:2]), pt2=tuple(eye_rect_l[2:4]), color=(255,255,255), thickness=2)
cv2.rectangle(img, pt1=tuple(eye_rect_r[0:2]), pt2=tuple(eye_rect_r[2:4]), color=(255,255,255), thickness=2)
cv2.putText(img, state_l, tuple(eye_rect_l[0:2]), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,255), 2)
cv2.putText(img, state_r, tuple(eye_rect_r[0:2]), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,255), 2)
cv2.imshow('result', img)
if cv2.waitKey(1) == ord('q'):
break