
1 Peng-Robinson

The Peng-Robinson equation of state is
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where ν is the molar volume, Tc is the critical temperature, Pc is the critical
pressure, ω is the acentric factor, and where
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The cubic polynomial form of the compressibility factor is

Z3 + αZ2 + βZ + γ = 0 (6)
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1.1 Isothermal Compressibility

Isothermal compressibility is defined as
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Taking the derivative of (6) with respect to pressure at constant temperature
yields
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which simplifies to
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the compressibility factor and molar volume are related by
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(14)

Therefore, molar volume can be expressed as
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The derivative of molar volume with respect to pressure at constant temperature
is then (
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which simplifies to (
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Therefore, equations (13) and (16) can be used to calculate isothermal com-
pressibility given the corresponding derivatives of α, β, and γ. From equations
(7-9) the following derivatives are readily available(
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Finally, from equations (10) and (11) the last two required derivatives are defined
as (
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