1 Peng-Robinson

The Peng-Robinson equation of state is
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where v is the molar volume, T, is the critical temperature, P, is the critical
pressure, w is the acentric factor, and where
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The cubic polynomial form of the compressibility factor is
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1.1 TIsothermal Compressibility

Isothermal compressibility is defined as
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Taking the derivative of (6) with respect to pressure at constant temperature
yields
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which simplifies to
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the compressibility factor and molar volume are related by
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Therefore, molar volume can be expressed as
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The derivative of molar volume with respect to pressure at constant temperature
is then
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Therefore, equations (13) and (16) can be used to calculate isothermal com-
pressibility given the corresponding derivatives of «, 8, and . From equations
(7-9) the following derivatives are readily available

(@)= (@), an

which simplifies to
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Finally, from equations (10) and (11) the last two required derivatives are defined
as
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