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ABSTRACT

This document is the user's manual for the second-generation Chemkin package.
Chemkin is a software package whose purpose is to facilitate the formation, solution, and
interpretation of problems involving elementary gas-phase chemical kinetics. It provides
an especially flexible and powerful tool for incorporating complex chemical kinetics into
simulations of fluid dynamics. The package consists of two major software components: an
Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads
a symbolic description of an elementary, user-specified chemical reaction mechanism. One
output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine
Library. This library is a collection of about 100 highly modular Fortran subroutines that
may be called to return information on equation of state, thermodynamic properties, and
chemical production rates .
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C1J

NOMENCLATURE

Coefficients to fits of thermodynamic data

Standard state specific Helmholtz free energy for
the kth species

Mean Helmholtz free energy of a mixture

Standard state Helmholtz free energy for the kth species

Mean Helmholtz free energy for a mixture

Pre-exponential factor in the rate constant of the
i th reaction

Specific heat at constant pressure of the kth species

Mean specific heat at constant pressure

Standard state specific heat at constant pressure of the

kth species

Specific heat at constant pressure of the kth species

Mean specific heat at constant pressure

specific heat at constant volume of the kth species

Mean specific heat at constant volume

Specific heat at constant volume of the kth species

Mean specific heat at constant volume

Chemical creation rate of the kth species

Chemical destruction rate of the kth species

Activation energy in the rate constant of the i th reaction

Standard state specific Gibbs free energy for the
kth species

Mean Gibbs free energy of a mixture

Standard state Gibbs free energy for the kth species

depends on n

ergs/g

ergs/g

ergs/mole

ergs/mole

depends on
reaction

ergs/(g K)

ergs/(g K)

ergsj(mole K)

ergs/(mole K)

ergsj(mole K)

ergsj(g K)

ergsj(g K)

ergs/(mole K)

ergs/(mole K)

moles/(cm3 sec)

molesj(cm3 sec)

[cal/mole]*

ergsjg

ergsjg

ergs/mole

*By default, Chemkin uses activation energies in calories instead of ergs.
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CGS Units

G Mean Gibbs free energy of a mixture ergs/mole

hk Specific enthalpy of the kth species ergs/g

It Mean specific enthalpy of a mixture ergs/g

Hk Standard state enthalpy of the kth species ergs/mole

Hk Enthalpy of the kth species ergs/mole

H Mean enthalpy of a mixture ergs/mole

~ Reaction index

I Total number of reactions

k Species index

k fi Forward rate constant of the i th reaction depends on
reaction

kri Reverse rate constant of the i th reaction depends on
reaction

K Total number of species

K Ci Equilibrium constant in concentration units for the depends on
i th reaction reaction

KPi Equilibrium constant in pressure units for the depends on
i th reaction reaction

[AJ] Total concentration of a mixture moles/cm3

N Number of coefficients in polynomial fits to C;/R

p Pressure dynes/cm2

Patm Pressure of one standard atmosphere dynes/cm2

qi Rate of progress of the i th reaction moles/{cm3sec)

R Universal gas constant ergs/{mole K)

Rc Universal gas constant, in same units as activation [cal/{mole K)]
energy Ei

SO Standard state specific entropy of the kth species ergs/{g K)k

S Mean specific entropy of a mixture ergs/{g K)
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ergs/g

ergs/g

ergs/mole

ergs/mole

CGS Units

ergs/(mole K)

ergs/(mole K)

ergs/(mole K)

K

Mean internal energy of a mixture

Mean entropy of a mixture

Mean specific internal energy of a mixture

Internal energy of the kth species

Temperature

Specific internal energy of the kth species

Standard state entropy of the kth species

Entropy of the kth species

u

T

Yk Mass fraction of the kth species

Xk Mole fraction of the kth species

w

Molar concentration of kth species

Molecular weight of kth species

Mean molecular weight of a mixture

moles/cm3

g/mole

g/mole

GREEK

aki Enhanced third body efficiencies of the kth species in
in the i th reaction.

f3i Temperature exponent in the rate constant of the
i th reaction.

p Mass density.

Characteristic chemical destruction time of the
kth species.

sec

Vki Stoichiometric coefficients of the kth reaction, Vki = v~i - v~i'

v~i Stoichiometric coefficients of the kth reactant
species in the i th reaction.

v~i Stoichiometric coefficients of the kth product species
in the i th reaction.

Chemical production rate of the kth species. mole/(cm3 sec)
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CHEMKIN-II: A FORTRAN CHEMICAL KINETICS PACKAGE FOR
THE ANALYSIS OF GAS-PHASE CHEMICAL KINETICS

I. INTRODUCTION

The Chemkin package is one of three basic elements in a large and growing body of
software designed to facilitate simulations of elementary chemical reactions in flowing
systems. The other major elements are the transport property package1,2 and the surface
chemistry package. 3 These packages should not be considered "programs" in the ordinary
sense. That is, they are not designed to accept input, solve a particular problem, and
report the answer. Instead, they are software tools intended to help a user work efficiently
with large systems of chemical reactions and develop Fortran representations of systems
of equations that define a particular problem. It is up to the user to solve the problem
and interpret the answer. A general discussion of this structured approach for simulating
chemically reacting flow can be found in Kee and Miller.4

An important advantage of the general-purpose and problem-independent structure
of Chemkin is that it allows the analyst to work with the same chemical input regardless
of the particular problem. Thus there is no need to remember a different input protocol
for different problems, and consequently, the time required to switch between problems
or to develop a new application is minimized. Additionally, by making Chemkin easily
transportable between computers, we hope to facilitate the exchange of applications codes
between different sites. Often such exchanges are hampered by machine-dependent or
problem-specific coding.
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Background

Chemkin-II is a revised, improved version of Chemkin. The original Chemkin5 was
published in 1980 and has remained essentially unchanged until recently. Over the past
year, however, we have completely rewritten the package to expand its capabilities. The
most important new capability is an accurate and efficient means of describing pressure­
dependent reactions. The rate laws for reactions of this type do not follow the modified
Arrhenius form that is required in the original Chemkin. Other new capabilities include
a Landau-Teller form of the rate expression for vibrational energy transfer processes, a
capability for specifying more than one rate expression for a reaction, and a capability
for explicitly specifying an Arrhenius expression for the reverse rate of a reversible
reaction. We have also restructured the internal data storage and rewritten many of the
computational algorithms to facilitate vectorization on computers like the Crays.

Although new features have been added, Chemkin-II omits some capabilities that
were included in the original Chemkin. The most important of these is the elimination
of the many partial-derivative subroutines. These subroutines were intended to help form
the Jacobian matrices that are needed for the computational solution of stiff differential
equations. In ten years of using Chemkin, however, we found that we never used the
partial-derivative capability. This is because we develop and apply computational
algorithms that rely on approximate finite-difference J acobians rather than exact analytic
Jacobians. Furthermore, the inclusion of the pressure-dependent reaction capability
makes deriving and implementing the partial derivative capabilities much more complex.
Therefore, we decided that the effort to provide this little-used capability was not
warranted.

The two packages are nearly compatible, although not entirely so. The original
Chemkin handled all character-string manipulations through the Hollerith data type.
Under the Fortran-66 standard that was predominant in 1980, Hollerith was the only
standard way to deal with string information. However, the Fortran-77 standard is now
universally accepted, and it does not recognize Hollerith data type, but replaces it with
the much more powerful character data type. Therefore, Chemkin-II has eliminated
Hollerith data type and is based entirely on character data.

We have included several new utility subroutines for manipulating character strings.
Such capabilities are useful in writing the input and output sections of a new Chemkin
application program. For example, in setting initial conditions for a species, it is useful to
have a function that can read a character string containing a species name and a floating­
point number. Subroutine CKSNUM will parse such a string into a species index number
and a floating-point number. Section 15 of Chapter V describes several such utility
routines.
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Structure and Use of Chemkin

The Chemkin package is composed of two blocks of Fortran code and two files:

- the Interpreter (code)
- the Gas-Phase Subroutine Library (code)
- the Thermodynamic Database (file)
- the Linking File (file).

To apply Chemkin to a problem, the user first writes a Fortran program that describes
his particular set of governing equations. This programming is minimal since the user
need only call Chemkin subroutines which define the terms in his equations that relate
to equation of state, chemical production, and thermodynamics, and combine the result to
define his problem.

Next, the user runs the Interpreter, which first reads the user's symbolic description
of the reaction mechanism and then extracts the appropriate thermodynamic information
for the species involved from the Thermodynamic Database. 6 The database has exactly
the same format as that used by the NASA complex chemical equilibrium code by Gordon
and McBride. 7 The output of the Interpreter is the Linking File, which contains all the
pertinent information on the elements, species, and reactions in the mechanism.

The Linking File is read by an initialization subroutine that is called from the user's
code. The purpose of the initialization is to create three data arrays (one integer, one
floating point, and one character data type) for use internally by the other subroutines
in the Gas-Phase Subroutine Library.

The Gas-Phase Subroutine Library has over 100 subroutines that return information
on elements, species, reactions, equations of state, thermodynamic properties, and
chemical production rates. Generally, the input to these routines will be the state of gas­
pressure or density, temperature, and species composition.

Example

We illustrate a simple application of the Chemkin package using a hydrogen oxidation
process. The input file to the Chemkin Interpreter is shown in Fig. 1. It first specifies
the elements and species that appear in the mechanism, and then describes the reaction
mechanism itself. The input is essentially format free. The elements and species names
need only be separated by blank spaces. The character string that describes the reaction
appears on the left and is followed by the three Arrhenius coefficients (pre-exponential
factor, temperature exponent, and activation energy). Enhanced third body efficiencies

11



ELEMENTS H 0 N END
SPECIES H2 H 02 0 OH H02 H202 H20 N N2 NO END

REACTIONS
H2+02=-20H 0.170E+ 14 0.00 47780

OH+ H2=-H20+H 0.117E+ 10 1.30 3626 D-L&W
0+OH=02+ H 0.400E+ 15 -0.50 0 JAM 1986

0+ H2=OH+ H 0.506E+05 2.67 6290 KLEMM ET AL., 1986
H + 02 + M = H02 + M 0.361E+ 18 -0.72 0 DIXON-LEWIS

H20/18.6/ H2/2.86/ N2/1.26/
OH + H02 = H20+ 02 0.750E+13 0.00 0 D-L
H+ H02=-20H 0140E + 15 0.00 1073 D-L
0+ H02=02+0H 0.140E + 14 0.00 1073 D-L
20H=-0+H20 0.600E+09 1.30 0 COHEN-WEST
H+H+ M=H2+M 0100E+ 19 -1.00 0 D-L

H20/0.0/ H2/0.0/
H + H + H2 = H2 + H2 o920E + 17 -0.60 0
H + H + H20 = H2 + H2O 0.600E+20 -1.25 0
H+ OH+ M=H20-+ M 0.160E + 23 -2.00 0 D-L

H20/5/
H+O+M=OH+M 0.620E+ 17 -0.60 0 D-L

H20/5/
0+0+ M=02+M 0.189E+14 0.00 -1788 NBS
H+ H02=H2+02 0.125E+ 14 0.00 0 D-L
H02 + H02 = H202 + 02 0.200E + 13 0.00 0
H202 + M =- OH + OH + M 0.130E+ 18 000 45500
H202 + H =- H02 + H2 0.160E+ 13 0.00 3800
H202 -+ OH =- H20 + H02 0.100E+ 14 0.00 1800
0+ N2=NO+ N 0.140E-+ 15 0.00 75800
N+ 02=NO+ 0 0.640E+ 10 1.00 6280
OH-+N=NO+H OAOOE + 14 0.00 0

END

Figure 1. Sample Reaction Mechanism as Read by the Chemkin Interpreter.

for selected species are specified in the line following that for a reaction which contains an
arbitrary third body, M.

Assume the governing equation we wish to study is the energy conservation equation
for a constant-pressure environment:

aT
at

where T is the temperature, p the mass density, cp the mean specific heat, hk the species
enthalpies, and Wk the species molar production rates. The representation of this equation
begins with Chemkin subroutine calls (the output variables are underlined to help
distinguish them):
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CALL CKINIT(LENIWK, LENRWK, LENCWK, LINKCK, LOUT, ICKWRK, RCKWRK, CCKWRK)
CALL CKINDX(ICKWRK, RCKWRK, MM, KK, il, NFIT)
CALL CKRHOY(P, T, Y, ICKWRK, RCKWRK, RHO)
CALL CKCPBS(T, Y, ICKWRK, RCKWRK, CPB)
CALL CKHML(T, ICKWRK, RCKWRK, HML)
CALL CKWYP(P, T, Y, ICKWRK, RCKWRK, WDDT)

The complete details for these calls are explained in later sections of this document,
the object here being to illustrate the relative simplicity of a Chemkin application. Briefly,
the first call is to the initialization subroutine CKINIT, which reads the Linking File
created by the Interpreter and creates the three work arrays. LENIWK, LENRWK, and
LENCWK are dimensions provided by the user for the data arrays ICKWRK, RCKWRK,
and CCKWRK. LINKCK is the logical file number of the Linking File, and LOUT is the
logical file number for printed diagnostic and error messages. In the remaining calls, P, T,
and Yare the pressure, temperature, and vector of species mass fractions, respectively.
The output variables correspond to the various terms for describing the equation, i.e.,
RHO = p, CPB = cp , HML = hk, and WDOT = Wk. The total number of species is
denoted by KK.

The Fortran representation of the governing equation, given by combining the results
of the above subroutine calls, is simply

SUM=O.O
DO 100 K=l,KK

SUM = SUM + HML(K)*WDOT(K)
100 CONTINUE

DTDT = -SUM/(RHO*CPB)

One can see from this example that relatively little programming effort is required to
form an arbitrary governing equation from an arbitrary reaction mechanism.

Transportability

The Chemkin package was developed on VAX/VMS and Cray/CTSS computers.
However, we have not taken advantage of any special machine-dependent features. Written
entirely in ANSI standard Fortran-77, the code is easily transportable to other computer
systems. Since double-precision code is often required on small-word-Iength (i.e., 32-bit
word) computers, we provide both single- and double-precision versions of the source code.
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Organization of this Report

Chapter II is a compendium of important equations in gas-phase chemical kinetics.
Many of the equations are simply definitions; but, in any case, derivations are either
sketchy or not given. Although most readers will find all of the equations quite familiar,
we find it useful to have these equations stated concisely in one document. For most of
the equations, the package contains a subroutine that, when given the variables on the
right-hand side, returns the variable on the left. Below the equation number is stated
(in brackets) the name of the subroutine that provides information about that equation.
For example, Eq. (3) in Chapter II gives mean molecular weight in terms of the mass
fractions. Subroutine CKMMWY would therefore be called to return this information.

Chapter III explains the mechanics of using Chemkin and describes the job control
logic for running a problem. Chapter IV explains the Chemkin Interpreter and how to
set up the required symbolic input to define a reaction mechanism. Chapters V and
VI describe the Gas-Phase Subroutine Library, Chapter V being composed of short
descriptions for quick reference and Chapter VI (an alphabetical listing) explaining the
input and output in the call sequence as well as cross referencing each subroutine to
equation numbers in Chapter II. To demonstrate Chemkin explicitly, Chapter VII goes
through a sample problem in detail.

Appendix A defines the allocation of three work arrays that are created from the
Linking File. With this information, a user can treate new subroutines for the library to
suit a specialized need that was not anticipated in the current library.

14



II. THERMODYNAMICS AND CHEMICAL RATE EXPRESSIONS

The purpose of this chapter is to list expressions and equations that are potentially
useful in formulating a chemically reacting flow problem. For each expression/equation,
the subroutine that evaluates it is named.

Choice of Variables

T

(~

The formulation of any problem requires that a set of dependent variables be chosen.
Unfortunately there is no clear choice that is generally superior for all problems. In the
Chemkin package we have decided to allow the user to select either pressure or density,
temperature, and either mass fraction, mole fraction, or molar concentration. In other
words, to define the state of a gas, one variable must be selected from each column of the
array below.

In making these options available from among the many possible, we have attempted to
provide combinations of variables that are natural ones for a wide class of problems. For
example, pressure is a natural choice in situations where pressure is fixed, and density
is a natural variable where volume is fixed. Moreover, density is a natural variable in
many problems involving fluid mechanics because it is determined directly from the
mass continuity equation. Temperature is always ta.ken as a natural variable because
the thermodynamic properties and the chemical rate constants both depend directly on
temperature. Mass fraction and mole fraction are convenient variables for describing the
composition of a gas. Molar concentration is usually less convenient, but it is often a
natural variable because the rate of progress of chemical reactions depends directly on the
molar concentration of the reactants and products.

Equation of State

The equation of state used is that of a perfect gas:

_ pRT
p--­

W
(1)

[CKPY, CKPX, CKPC]

PvV
p= RT

(2)
[CKRHOY, CKRHOX, CKRHOC]

15



The mean molecular weight W may be defined variously as

- 1
W= K '

Lk==l Yk/Wk
K

W=L:XkWk,
k==l

or

Mole-Mass Conversion

(3)
[CKMMWY]

(4)
[CKMMWX]

(5)
[CKMMWC]

It is often convenient to represent a gas-mixture species composition variously as
either mass fraction, mole fraction, or molar concentration. In this section we state the
conversion formulas between these ways to describe the mixture composition.

Mass fraction to mole fraction-

X
_ Yk _ Yk W

k- K. ---
Wk Lj==l Yj/Wj Wk

Mass fraction to molar concentration-

[X.] = RT~ii:~~Wj = (~~) ~~
Yk

[Xk ] = P ..
Wk

Mole fraction to mass fraction-

Xk Wk
Yk =

LfSl XjWj

Mole fraction to molar concentration-

[Xk] = Xk :r
P[Xk] = Xk =:-::

W
Molar concentration to mass fraction-

v _ [Xk]Wk
Ik - K r

Lj==d.t\j]lVj

Molar concentration to mole fraction-

16

(6)
[CKYTX]

(7)
[CKYTCP]

(8)
[CKYTCR]

(9)
[CKXTY]

(10)
[CKXTCP]

(11)
[CKXTCR]

(12)
[CKCTY]

(13)
[CKCTX]



Standard-State Thermodynamic Properties

Chemkin presumes that the standard-state thermodynamic properties are given in
terms of polynomial fits to the specific heats at constant pressure:

(14)

The superscript 0 refers to the standard-state 1 atmosphere. For perfect gases, however,
the heat capacities are independent of pressure; the standard-state values are the actual
values. Other thermodynamic properties are given in terms of integrals of the specific
heats. First, the standard-state enthalpy is given by

so that
Hk = £ankT(n-l) + aN+l,k

RT n=l n T

where the constant of integration aN+l,kR is the standard heat of formation at 0 K.
Normally, however, this constant is evaluated from knowledge of the standard heat of
formation at 298 K since the polynomial representations are usually not valid down to
OK.

The standard-state entropy is written as

T Co
So = r ~dT

k io T

so that

(15)

(16)

(17)

(18)

where the constant of integration aN+2,kR is evaluated from knowledge of the standard­
state entropy at 298 K.

The above equations are stated for an arbitrary-order polynomial, but the Chemkin
package is designed to work with thermodynamic data in the form used in the NASA
chemical equilibrium code. 7 In this case, seven coefficients are needed for each of two
temperature ranges.* These fits take the following form:

(19)
[CKCPOR]

* The Chemkin Interpreter can be modified for additional temperature ranges, which would
then require format changes to the thermodynamic data.
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HI: a2k T a3k T2 a4k T3 a5k T 4 a6k
-=a1k+- +- +- +- +-
RT 2 3 4 5 T

(20)
[CKHORT]

(21)
[CKSOR]

Other thermodynamic properties are easily given in terms of C;, HO, and 5°. The specific
heat at constant volume C~ is stated as

C o - Co R'Vk - Pk _. ,

the internal energy U is given as

Uk = Hk - RT,

the standard-state Gibbs free energy GO is written as

Gle = Hk- T5fc,

and the standard-state Helmholtz free energy Ao is defined to be

Ale = Uk -TSfc·

(22)
[CKCVML]

(23)
[CKUML]

(24)
[CKGML]

(25)
[CKAML]

For a perfect gas, the standard-state specific heats, enthalpies, and internal energies are
also the actual values. Therefore, we drop the superscript 0 on those quantities.

Often, specific thermodynamic properties are needed in mass units (per gram) rather
than in molar units (per mole). The conversion is made by dividing the property in molar
units by the molecular weight. The specific properties are thus given as

CPk (26)
cPk =-

[CKCPMS]Wk

Hk (27)hk = ......
[CKHMS]Wk

° Sfc (28)
Sk = .... _.

[CKSMS]H1k

CVk (29)
C - ....

[CKCVMS]Vk - Wk

Uk (30)
Uk =--

[CKUMS]W k

° G% (31)
9k =._-

[CKGMS]Wk

18



(32)
[CKAMS]

One also often needs mixture-averaged thermodynamic properties. As with the pure­
species properties, the Chemkin thermodynamics subroutines return properties in either
mass or molar units. The mixture-averaged specific heats are given by

the enthalpies by

and the internal energies by

K (33)
Cp = L CPk Xk

[CKCPBL]k==l

K (34)
cp = L CpkYk = CpjW

[CKCPBS]k==l
K (35)

Cv = L CvkXk
[CKCVBL]k==l

K (36)
Cv = L CVk Yk = -CvjW,

[CKCVBS]k==l

K (37)
Ji = L HkXk

[CKHBML]k==l
K (38)

h=LhkYk=HjW,
[CKHBMS]k==l

K (39)
V = L UkXk

[CKUBML]k==l

K (40)
U = L UkYk = U/W.

[CKUBMS]k==l

The mixture properties are more complex for the entropies and the Gibbs and Helmholtz
free energies. Here the actual values are not the same as the standard-state values and we
must account for the appropriate pressure and entropy-of-mixing terms, i.e.,

(41)

where Patm is the standard-state pressure of 1 atmosphere. Thus the mixture-averaged
entropy is given by

K

S = L (Sf - RlnXk - Rln(PjPatm))Xk
k==l

s = SjW.

19

(42)
[CKSBML]

(43)
[CKSBMS]



Similarly, the mixture-averaged Gibbs free energy is given as

K .
G= L [Hk - T(Sk - RlnXk - Rln(PjPatm))]Xk

k=l

9 = GjW,

and the mixture-averaged Helmholtz free energy is given by

K

A = L [Uk - T(Sk - RlnXk - Rln(Pj Patm )) ]Xk
k=l

a = AjW.

Chemical Reaction Rate Expressions

(44)
[CKGBML]

(45)
[CKGBMS]

(46)
[CKABML]

(47)
[CKABMS]

Consider I elementary reversible (or irreversible) reactions involving K chemical
species that can be represented in the general form

(i = 1, ... ,1) (48)

The stoichiometric coefficients Vki are integers* and Xk is the chemical symbol for the kth
species. Normally, an elementary reaction involves only three or four species; hence the Vki
matrix is quite sparse for a large set of reactions.

The production rate Wk of the kth species can be written as a summation of the rate­
of-progress variables for all reactions involving the kth species:

where

I

Wk = L vkiqi
i=l

(k = 1, ... ,K)
(49)

[CKWYP, CKWYR, CKWXP,
CKWXR, CKWC, CKCONT]

(50)
[CKNU]

* Global reactions are sometimes stated with non-integer stoichiometric coefficients.
However, because we have designed Chemkin to work exclusively with elementary reaction
steps, we only consider integer stoichiometric coefficients.
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The rate-of-progress variable qi for the ith reaction is given by the difference of the
forward rates and the reverse rates as

K I K "
qi = kfi II [Xktki - kri II [Xktki

k=l k=l

(51)
[CKQYP,CKQYR, CKQXP,
CKQXR, CKQC, CKCONT]

where [Xk] is the molar concentration of the kth species and k fi and kri are the forward
and reverse rate constants of the ith reaction. The forward rate constants for the I
reactions are generally assumed to have the following Arrhenius temperature dependence:

(52)
[CKABE]

where the pre-exponential factor Ai, the temperature exponent f3i, and the activation
energy Ei are specified.* These three parameters are required input to the Chemkin
package for each reaction.

The reverse rate constants kri are related to the forward rate constants through the
equilibrium constants as

kf · ( )kri = ·K··~- 53
Ci

Although KCi is given in concentration units, the equilibrium constants are more easily
determined from the thermodynamic properties in pressure units; they are related by

(54)
[CKEQYP, CKEQYR,

CKEQXP, CKEQXR, CKEQC]

where Patm denotes a pressure of 1 atm. The equilibrium constants K Pi are obtained with
the relationship

KPi = exp ( ~:r-~~i) (55)

The ~ refers to the change that occurs in passing completely from reactants to products
in the ith reaction. More specifically,

~Sf K SI;
.. _.- = L Vki o·

R k=l R

~Hf K HI;
- - = L Vki-
RT k=l RT

(56)

(57)

* Two gas constants, Rand Rc , are used throughout this report and the Chemkin code.
Rc is used only in conjunction with the activation energy Ei and has compatible units. The
reason for the duality is because we find that many users would rather use different units
(say calories/mole) for the activation energies even though other units (say cgs or 51) are
used otherwise.
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Three-Body Reactions

In some reactions a ((third body" is required for the reaction to proceed; this is often
the case in dissociation or recombination reactions, e.g.,

When a third body is needed, the concentration of the effective third body must
appear in the expression for the rate-of-progress variable. Accordingly, the rate-of-progress
variable is different from Eq. (51) by the first factor in the equation below:

(58)
[CKQYP, CKQYR, CKQXP,

CKQXR, CKQC, CKTHB]

If all species in the mixture contribute equally as third bodies, then all the o.ki = 1, and
the first factor is the total concentration of the mixture,

K P
[1\'£] = L [Xk] =-----

k=l RT
(59)

However, it is often the case that some species act more efficiently as third bodies than
do others. The o.ki coefficients are then used to specify the increased efficiency of the kth
species in the ith reaction. Also, if a species is to be excluded from acting as a third body
in a particular reaction, then o.ki = 0 for that species. Any o.ki that differ from 1 must be
specified by input to the Chemkin Interpreter.

Pressure-Dependent Fall-off Reactions

Under certain conditions, some reactions can fall in a regime that is between the
high- and low-pressure limiting forms of the rate expressions. As an example consider
methyl (CH3 ) recombination. In the high-pressure limit, the appropriate description
of the reaction is CH3 + CH3 P C2H6 . In the low-pressure limit, t.he appropriate
description is CH3 + CH3 + M P C2 H6 + M. When such a reaction is at either limit,
the rate expressions discussed in the preceeding paragraphs are applicable. However, when
the pressure and temperature are such that the reaction is between the limits, the rate
expressions are more complicated. To denote a reaction that is in this ((fall-oW' region, we
write the reaction with the M enclosed in parentheses,

There are several methods of represent.ing the rate expressions in this fall-off region.
The simplest one is due to Lindemann. 8 There are also now two other (and related)
methods that provide a more accurate description of the fall-off region than does the
simple Lindemann form. The Chemkin package handles all three of these forms as options.
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We begin first with the Lindemann approach. Arrhenius rate parameters are required
for both the high- and low-pressure limiting cases, and the Lindemann form for the rate
coefficient blends them to produce a pressure-dependent rate expression. In Arrhenius
form, the parameters are given for the high-pressure limit (koo ) and the low-pressure limit
(ko) as follows:

ko = AoT!3o exp(-Eo/ ReT),

koo = Aoo T!3°o exp( -Eoo / ReT).

The rate constant at any pressure is then taken to be

Pr )k = koo ( F,
1+Pr

where the reduced pressure Pr is given by

ko[M]Pr = ----_._-
koo

(60)

(61)

(62)

(63)

and [.AI] is the concentration of the mixture (possibly including enhanced third-body
efficiencies). t If the F in Eq. (62) is unity, then this is the Lindemann form. The other
descriptions involve more complex forms for the function F.

In the Troe form 9 F is given by

[
2]-1log Pr + C

log F = 1 + [n _d(log P
r
+C)] log Fcent .

The constants in Eq. (64) are

C = -0.4 - 0.6710g Fcent

n = 0.75 - 1.27 log Fcent

d = 0.14

and
Fcent = (1- a) exp(-T/T***) +aexp(-T/T*) +exp(-T** /T).

The four parameters a, T***, T*, and T** must be specified as input to the Chern kin
Interpreter. (It is often the case that the parameter T** is not used. Thus Chemkin
provides for the use of either three or four parameters.)

(64)

(65)

(66)

(67)

(68)

t It is also possible that the third body in the fall-off region could be a specific species
rather than the mixture as a whole. In such a case, the reaction could be written, for example,
as CH3 + CH3 (+ N2) p C2H6 (+ N2). In this case, the concentration of nitrogen [N 2]

would replace the total concentration of the mixture [M] in these equations.
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(70)

(71)

The approach taken at SRI International by Stewart et a1. 10 is in many ways similar
to that taken by Troe, but the blending function F is approximated differently. Here, F is
given by

(69)

where
1

X = --------2-.
1 +log Pr

In addition to the six Arrhenius parameters-three each for the low-pressure limit (ko)
and high-pressure limit (koo ) expressions-the user must supply the parameters a, b, and
c in the F expression. Note that a and c here are not the same as the a and c in the Troe
formulation. The parameters d and e were not discussed by Stewart et 801., but we have
included them as additional optional parameters to increase flexibility. If one wishes, d
and e can be considered parameters that define the weak-collision efficiency factor (l3c)
dependence of F, in the event that one wants to compute strong-collision rate parameters
and correct them with various values of I3c.

Landau-Teller Formulation of the Rate Expressions

For reactions such as vibrational energy transfer processes, the Arrhenius form of the
rate expression (Eq. 52) is often not used. Instead, it is common to use the following
Landau-Teller expression,

kIi = Ai exp (B~ + C;) .
T3 Tj

In Chemkin, we have provided the possibility to blend the Arrhenius expression with the
Landau-Teller expression in the general expression below

(72)

Clearly, by setting Bi and Ci to zero, the Arrhenius expression is recovered, and by setting
l3i and Ei to zero, the standard Landau-Teller expression is recovered. If appropriate,
however, all the parameters can be used together to provide more flexibility in the
reaction-rate expression than could be afforded by one of the forms alone.
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Special Forms of the Rate Expressions

It is often convenient to separate the species chemical production rates into creation
and destruction rates. Furthermore, some numerical approaches take advantage of this
separation. Therefore, we provide subroutines that return the chemical rates in the
following form:

(73)
[CKCDYP, CKCDYR,

CKCDXP, CKCDXR, OKCDC]

where, for non-three-body reactions,

I K I K

Ok = 2: vLkri II [Xjtj~ +2: v~ikli II [Xj]/lji
i=l j=l i=l j=l

and

(74)

(75)
I K I K

Dk = 2: Vkikfi II [Xjtji +2: v~ikri II [Xjtj~.
i=l j=l i=l j=l

When third body reactions are involved, each sum in the above equations is multiplied by
the third-body concentration

K

[M] = 2: (Xki[Xk].
k=l

Another useful form for the chemical production rates is found by defining a creation rate
and a characteristic time for the destruction rate, i.e.,

(76)
[CKCTYP, CKCTYR,

CKCTXP, CKCTXR, CKCTO]

Here the characteristic time is given simply in terms of Dk as

(77)

As a precaution against [Xk] and Dk simultaneously approaching zero, the Chemkin
implementation of the destruction time is written as

(78)
[CKCTYP, CKCTYR,

CKCTXP, CKCTXR, CKCTO]

where € is an arbitrary small number,* say 10-5°.
* This computer-dependent number is set in the Gas-Phase Subroutine Library at the time

the library is created.
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III. THE MECHANICS OF USING CHEMKIN

Chemkin is a highly structured and modular package that requires the manipulation of
a number of programs, subroutines, and data files. This chapter describes the structure of
the package and the job-control logic that is required to use it.

Structure of Chemkin

The general structure of the Chemkin package is shown in Fig. 2. The Interpreter is a
program that reads a symbolic description of a reaction mechanism and then extracts the
needed thermodynamic data for each species involved from the Thermodynamic Database.
The primary output from the Interpreter is a binary file called the Linking File. This file
contains information that contains all required information about the elements, species,
and reactions in the user's mechanism.

The Linking File is written on LINKCK (defaulted as Fortran unit 25). The logical file
number for LINKCK must be declared both in the Interpreter (so it can be written) and
in the user's code (so that it can be read by the initialization subroutine).

In addition to the Linking File, three other files are needed by the Interpreter:
an input file, an output file, and a Thermodynamic Database file. 6 The input to the
Interpreter is read from file LIN (defaulted as Fortran unit 15) and printed output is
directed to LOUT (defaulted as Fortran unit 16). The printed output contains a listing
of the elements, species, and the reaction mechanism, and it provides diagnostic error
messages if they should be needed.

The Thermodynamic Database is assigned to file LTHRM (defaulted as Fortran
unit 17). LTHRM can be a large file with information on many species, most of which
are not needed for any given problem. Thermodynamic data can also be read from input;
these data can replace or add to that in the Thermodynamic Database.

Once the Interpreter has been executed and the Linking File created, the user is ready
to use the Gas-Phase Subroutine Library. Subroutines from this library are called from
the user's Fortran code. The user's first step must be to dimension three work arrays (oue
integer, one floating point, and one character data type)* and then call the initialization
subroutine CKINIT to create the work arrays from the Linking File. t One or more of
these arrays is required input to every other subroutine in the Chemkin package.

* The minimum length for the arrays can be found in Interpreter output.
t If there is an error in the input to the Interpreter, CKINIT will print a diagnostic message

and execution will stop.
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Figure 2. Schematic diagram showing the structure of the Chemkin package
and its relationship to an application code.

Selection of Chemkin subroutines for any given problem begins by finding the
appropriate equations in Chapter II. Most equations give a reference to a subroutine
name, for which the input and output lists are described in Chapters V and VI. Normally
only a few of the subroutines in the package would be called for anyone problem.
Therefore, the subroutine package should be implemented in an object library format* so
that only those routines that are actually called by the user's code are loaded at the time
of execution.

* An object library is a collection of compiled subroutines that are stored in a special way
so that the computer only links those subroutines that are referenced in the user's program.
All computer operating systems have such a facility. In VAX/VMS, libraries are made with
the LIBRARY/CREATE command.
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Job Control

By example we show here how to run a simple application progra.m using Chemkin.
Figure 3 is an annotated VAX/VMS command procedure that outlines the important
steps. Even though the example is specific to VAX/VMS systems, the same functionality
must be invoked On any computer system. For the example, we assume that the Interpre­
ter has already been compiled and is in the form of an executable image. Furthermore, we
assume that the Gas-Phase Subroutine Library has been compiled and an object library
has been created.

VAX/VMS Commands

$assign MECHANISMDAT

$assign INTERP.OUT

$assign THERMODAT

$assign L1NK.BIN

FOR015

FOR016

FOR017

FOR025

Meaning

Assign the user's reaction mechanism to Fortran
unit 15. This is the input file for the Chemkin
Interpreter.

Assign the output file tor printed output from the
Chemkin Interpreter. The Interpreter writes to unit 16.

Assign the Thermodynamic Database to Fortran
unit 17.

Assign the Linking file to Fortran unit 25.

$run

$tor

INTERP.EXE

SAMPLE.FOR

Execute the Interpreter.

Compile the user's Fortran program.

$assign SAMPLE.INP

$asslgn SAMPLE OUT

FOR005

FOR006

Assign a file containing any input required by the
user's program to Fortran unit 5.

Assign a file to accept any printed output trom the
user's program to Fortran unit 6.

$Iink

$run

SAMPLE.OBJ. CKLIB/LiB

SAMPLE

Link the user's program with the Chemkin Gas-Phase
Subroutine Library.

Execute the user's program.

Figure 3. A sample VAX/VMS command procedure showing the steps required
to run an application code using the Chemkin package.
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IV. USING THE INTERPRETER

The Interpreter is used to read (from file LIN) a symbolic description of an elementary
chemical reaction mechanism and create a Linking File (LINKCK) of pertinent informa­
tion about that mechanism. The information in the Linking File is subsequently accessed
by various subroutines to provide information on equation of state, thermodynamic prop­
erties, and chemical production rates.

The Interpreter input includes information on elements, species, thermodynamic
data, and the reaction mechanism. Input information on file LIN is given in 80-column
card image format. Element data are read first; species data are second, followed by
optional thermodynamic data, with reactions specified last. The thermodynamic data
for the species may come from input (file LIN) and/or from a Thermodynamic Database
(file LTHRM). The syntax for the four types of input is described below.

With the exception of the thermodynamic data, all input is format free. For the
thermodynamic data, we have chosen to use the same format as used in the NASA
Chemical Equilibrium code by Gordon and McBride.7

Element Data

All chemical species in the reaction mechanism must be composed of chemical
elements or isotopes of chemical elements. Each element and isotope must be declared as
a one- or two-character symbol. The purpose of the element data is to associate atomic
weights of the elements with their character symbol representations and to identify the
order in which arrays of element information in the Gas-Phase Subroutine Library are
referenced. For example, a Fortran array of atomic weights for the elements is in exactly
the same order in which the elements were declared in the element data. In other words, if
the atomic weights are stored in an array AWT, then AWT(3) is the atomic weight of the
third element declared in the element data.

For the elements appearing on the periodic chart, the Interpreter has the atomic
weight (in grams per mole) stored internally. For isotopes, a one- or two- character symbol
must be input to the Interpreter to identify each isotope, and a symbol and an atomic
weight (in grams per mole) for each must be defined. The same symbol must be used in
the thermodynamic data to identify the elemental composition of species involving the
isotope. Once an isotope has been so defined, it is treated exactly as a new element. If
an ionic species is used in the mechanism (i.e., OH+), an electron must be declared as the
element E.
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Element data must start with the word ELEMENTS (or ELEM), followed by any
number of element symbols on any number of lines. Element symbols may appear
anywhere on a line, but those on the same line must be separated by blanks. Any line or
portion of a line starting with an exclamation mark (!) is considered a comment and will
be ignored. Blank lines are ignored.

If an element is on the periodic chart,* then only the symbol identifyi ng the element
need appear in the element data. For an isotope, the atomic weight must follow the
identifying symbol and be delimited by slashes (/). The atomic weight may be in integer,
floating point, or E format (e.g., 2, 2.0, 0.2El), but internally it will be converted to a
floating point number. For example, the isotope deuterium may be defined as D/2.014/. If
desired, the atomic weight of an element in the periodic chart may be altered by including
the atomic weight as input just as though the element were an isotope.

Figure 4 shows several equivalent ways to describe element information. In this
example the elements are hydrogen, oxygen, nitrogen, and the isotope deuterium. Table I
summarizes the rules for element data.

* The elements that Chemkin recognizes are as follows:

~--- ----- -------- ~------------ ----

H HE LI BE B C N 0 F NE

NA MG AL SI P S CL AR K CA

SC TI V CR MN FE CO NI CU ZN

GA GE AS SE BR KR RB SR Y ZR

NB MO TC RU RH PO AG CD IN SN

SB TE I XE CS BA LA CE PR NO

PM SM EU GO TB DY HO ER TM YB

LU HF TA W RE OS IR PT AU HG

TL PB BI PO AT RN FR RA AC TH

PA U NP PU AM CM BK CF ES FM

D E
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ELEMENTS

ELEM
H
0/2.014/
o
N

END

ELEM H
ELEM 0/2014/
ELEM 0
ELEM N

H 0/2.014/ 0 N END

! ELEM is equivalent to ELEMENTS

! an END line is optional

Figure 4. Equivalent Ways to Describe Element Information.

TABLE I. SUMMARY OF THE RULES FOR ELEMENT DATA

1. The first element line must start with the word ELEMENTS (or ELEM).

2. Element or isotope names are either one, or two-character symbols.

3. An isotope name (i.e., a name not on the periodic chart) must be followed by its
atomic weight (in grams per mole) delimited by slashes.

4. Each element or isotope should be declared only once; however, duplicated element
symbols will be ignored.

5. An element or isotope name may appear anywhere on the line.

6. Any number of element or isotope names may appear on a line, and more than one
line may be used.

7. Element or isotope names that appear on the same line must be separated by at
least one blank space.

8. An element or isotope name that begins on one line may not continue to the next
line.

9. Any blank spaces between an element or isotope name and the first slash are
ignored and any blank spaces between slashes and an atomic weight are also
ignored. However, no blank spaces are allowed within an element name or an
atomic weight.

10. There may be more than one ELEMENT statement.

11. All characters following an exclamation mark are comments.
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Species Data

Each chemical species in a problem must be identified on a species line(s). Any set
of up to 16 upper or lower case characters* can be used as a species name. In addition,
each species must be composed of elements that have been identified in the element data.
As for the element data, one of the primary purposes of the species data is to identify
the order in which Fortran arrays of species information are referenced in the Gas-Phase
Subroutine Library.

Species data must start with the word SPECIES (or SPEC), followed by any number
of species symbols on any number of lines. Species symbols may appear anywhere on a
line, but those on the same line must be separated by blank spaces. Any line or portion
of a line starting with an exclamation mark (!) is considered a comment and will be
ignored. Blank lines are ignored. Figure 5 shows several equivalent ways to describe
species information. The rules for species data are summarized in Table II.

SPECIES H2 02 H 0 OH H02 N2 N NO END

SPEC
H2 02
H 0 OH H02 N2 N NO

END

SPEC H2
spec 02

etc.

! SPEC is equivalent to SPECIES

! an END statement is optional

Figure 5. Equivalent Ways to Describe Species Information.

* Species names may not begin with a number, a +, or an =, or have imbedded blanks;
an ionic species may end with any number of +'s or -'s; an imbedded plus sign (+) must be
enclosed in parentheses.
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TABLE II. SUMMARY OF THE RULES FOR SPECIES DATA

1. Species data must start with the word SPECIES (or SPEC).

2. Species names are composed of up to 16-character upper- or lower- case symbols.
The names cannot begin with the characters +, =, or a number; an ionic species
name may end with one or more +'s or -'so

3. Each species should be declared only once; however, duplicated species symbols
will be ignored.

4. Each species that subsequently appears in a reaction must be declared.

5. A species name may appear anywhere on the line.

6. Any number of species names may appear on a line, and more than one line may
be used.

7. Species named on the same line must be separated by at least one blank space.

8. A species name that begins on one line may not continue to the next line.

9. There may be more than one SPECIES statement.

10. All characters following an exclamation mark are comments.

Thermodynamic Data

Any chemical species that appears in a problem must have thermodynamic data
associated with it. The data may be extracted from a database (file LTHRM) and/or
read from input (file LIN). If all the thermodynamic data are to be extracted from the
database, then no thermodynamic data input is required. However, if the user wishes to
override information in the database or to provide data on species not in the database,
then Interpreter input is needed. In any case the format for the information is the same.

The format (see Table III) is a minor modification of that used by Gordon and
McBride3 for the Thermodynamic Database in the NASA Chemical Equilibrium code.
Our modification allows for a different midpoint temperature for the fits to the properties
of each chemical species. We also allow a species to be composed of a maximum of five
elements, not four. However, the formatting is such that the Chemkin Interpreter can use
the NASA database directly without any modification.

As indicated in Table III, the pertinent information includes the species name,
the elemental composition of the species, and the temperature ranges over which the
polynomial fits to thermodynamic data are valid. The fits to C;/ R, HO / RT, and So/ R
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TABLE III. SUMMARY OF THE RULES FOR THERMO DATA

Line
Number Contents Format Column

1 THERMO (or THERMO ALLa) Free Any

2b Temperature ranges for 2 sets of coefficients: 3F10.0 1 to 30
lowest T, common T, and highest T

3 Species name (must start in Column 1) 18A1 1 to18

Date (not used in the code) 6A1 19 to 24

Atomic symbols and formula 4(2A1,I3) 25 to 44

Phase of species (S, L, or G for solid, Al 45
liquid, or gas, respectively)

Low temperature E10.0 46 to 55

High temperature E10.0 56 to 65

Common temperature (if needed) E8.0 66 to 73
(blank for default)

Atomic symbols and formula (if needed) 2AI,I3 74 to 78
(blank for default)

The integer 1 11 80

4 Coefficients al - a5 in Eqs. (19) - (21), 5(E15.0) 1 to 75
for upper temperature interval

The integer 2 11 80

5 Coefficients a6, a7 for upper temperature 5(E15.0) 1 to 75
interval, and aI, a2, and a3 for lower

The integer 3 11 80

6 Coefficients a4, a5, a6, a7 4(EI5.0) 1 to 60
for lower temperature interval

The integer 4 11 80

Repeat lines 3 - 6 for each species.

last END (Optional, end of thermodynamic data.) Free Any
~--_._--~------~--_._-_._-_._-----------,----~------------------------_._----------------_...._~-----_ .._~_.---

aUse only when all the thermodynamic data are to be taken from Interpreter input.
bInclude line 2 only with THERMO ALL (it is already in the Thermodynamic Database).
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consist of seven coefficients for each of two temperature ranges [see Eqs. (19) - (21)].*
Further information about the fitting procedure and data for many species can be found in
a report on the Chemkin Thermodynamic Database. 5

When thermodynamic data input is required, it must immediately follow species
data.t The first thermodynamic data line must start with the word THERMO (or
THER). If all the thermodynamic data are input directly to the Interpreter, then the first
line must read THERMO ALL and the code will not expect a Thermodynamic Database
from file LTHRMj for this option the next line must be line 2 of Table III. For either
option, the subsequent thermodynamic data lines must be in the format of lines 3 - 6 of
Table III. (For the THERMO option the midpoint temperature is taken from the line 2
information already in the Thermodynamic Database.) As many species as needed can be
included as THERMO input.

Figure 6 shows some examples of thermodynamic property input. In these three
examples for OH, OH+, and OH-, it is seen from columns 25 - 34 that the elemental
composition of each molecule is one 0 atom and one H atom. In addition, columns 35 -
39 indicate that two of the species, OH+ and OH-, are ionic since they contain -1 and
+1 electrons (E), respectively. The G in column 45 indicates that aU three species are
gaseous. The lOOO.OO in columns 66 - 73 for OH+ indicates that the common temperature
between the high- and low-temperature fits is 1000.00 K. If columns 66 - 73 are left blank,
as they are for OH+ and OH-, then the common temperature is that given in columns
21 - 30 of line 2 in Table III, which in this example is in the Thermodynamic Database.

THERMO
OH 0 1H 1 G 0300.00 5000.00 1000.00

0.02882730E+02 0.10139743E-02-0.02276877E-05 0.02174683E-09-0.05126305E-14
0.03886888E+05 0.05595712E+02 0.03637266E+02 0.01850910E-02-0.16761646E-05
0.02387202E-07-0.08431442E-11 0.03606781E+05 0.13588605E+01

OH+ 0 1H 1E -1 G 0300.00 5000.00
0.02719058E+02 0.15085714E-02-0.05029369E-05 0.08261951E-09-0.04947452E-13
0.15763414E+06 0.06234536E+02 0.03326978E+02 0.13457859E-02-0.03777167E-04
0.04687749E-07-0.01780982E-10 0.15740294E+06 0.02744042E+02

OH- 1212860 1H 1E 1 G 0300.00 5000.00
0.02846204E+02 0.10418347E-02-0.02416850E-05 0.02483215E-09-0.07775605E-14

-0.01807280E+06 0.04422712E+02 0.03390037E+02 0.07922381E-02-0.01943429E-04
0.02001769E-07-0.05702087E-11-0.01830493E+06 0.12498923E+01

END

Figure 6. Examples of Thermodynamic Data Input.

* Additional temperature ranges and their fit coefficients may be accommodated by minor
changes to the Interpreter and the Thermodynamic Database.

t In the original Chemkin, the thermodynamic data preceeded the species data.
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The following is a summary of the possibilities for specifying thermodynamic data.

Ca~e_l: All thermodynamic data from da.tabase
1. Assign the database as file LTHRM (default Fortran unit 17)
2. No THERMO data required as input

.GC;l.!!~__.2: Thermodynamic data from database and input
1. Assign the database as file LTHRM (default Fortran unit 17)
2. Include the following lines:

THERMO
Data in Table III format (lines 3 - 6 repeated) for species not in the database
or to override species in database
END

Case 3: All thermodynamic data from input
1. Do not attach a database
2. Include the following lines:

THERMO ALL
Line 2 of Table III format.
Data in Table III format (lines 3 - 6 repeated) for at least all species named in
the species data.
END

Reaction Mechanism Description

The reaction mechanism may consist of any number of chemical reactions involving
the species named in the species data. A reaction may be reversible or irreversible; it
may be a three-body reaction with an arbitrary third body and/or enhanced third body
efficiencies; it may have a Lindemann,8 Tree,9 or SRI* fall-off formulationt; and it may
involve a photon.

Reaction data must start with the word REACTIONS (or REAC). On the sa.me
line, the user may specify units of the Arrhenius rate coefficients [Eq. (52)] to follow by
including the word CAL/MOLE, KCAL/MOLE, JOULES/MOLE, or KELVINS for Ei,
and/or MOLES or MOLECULES for Ai. If MOLECULES is specified, then the units for
Ai are cm-molecules-sec-K. If units are not specified, Ai and Ei must be in em-mole-sec­
K and cal/mole, respectively. The lines following the REACTION line contain reaction
descriptions together with their Arrhenius rate coefficients. The reaction description is
composed of reaction data and perhaps auxiliary information data.

* SRI refers to the formulation of Stewart et al. IO , who are at SRI International, Menlo
Park, CA.

t See Section III for a discussion of the different formulations
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Reaction Data

Each reaction line is divided into two fields. The first contains the symbolic descrip­
tion of the reaction while the second contains the Arrhenius rate coefficients. Both fields
are format free and blank spaces are ignored. Any line or portion of a line starting with
an exclamation mark (!) is considered a comment and will be ignored. Blank lines are ig­
nored.

The reaction description, given in the first field, must be composed of the species
symbols, coefficients, delimiters, and special symbols as summarized below.

Species Symbols: Each species in a reaction is described with the unique sequence of
characters as they appear in the species data and the thermodynamic
data.

Coefficients: A species symbol may be preceded by an integer coefficient. The
coefficient has the meaning that there are that many moles of the
particular species present as either reactants or products; e.g., 20H
is equivalent to OH + OH (a non-integer coefficient is not allowed).

Delimiters:

+ A plus sign is the delimiter between each reactant species and each
product species

An equality sign is the delimiter between the last reactant and the first
product in a reversible reaction

<=> An equality sign enclosed by angle brackets can also used as the
delimiter between the last reactant and the first product in a reversible
reaction

=> An equality sign with an angle bracket on the right is the delimiter
between the last reactant and first product in an irreversible reaction

Special Symbols:

+M An M as a reactant and/or product stands for an arbitrary third body.
Normally it would appear as both a reactant and a product. However,
it has the identical meaning even if it appears only as a reactant or a
product. In other words, an M anywhere in the reaction description
indicates that a third body is participating in the reaction. In a
reaction containing an M, species can be specified to have enhanced
third body efficiencies, in which case auxiliary information data
(described below) must follow the reaction line. If no enhanced third
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body efficiencies are specified, then all species act equally as third
bodies and the effective concentration of the third body is the total
concentration of the mixture.

(+M) An M as a reactant and/or product surrounded by parentheses
indicates that the reaction is a pressure-dependent reaction, in which
case auxiliary information line(s) (described below) must follow the
reaction to identify the fall-off formulation and parameters. A species
may also be enclosed in parenthesis. Here, for example, (+H20)
indicates that water is acting as the third body in the fall-off region,
not the total concentration M.

HV The symbol HV as a reactant and/or product indicates that photon
radiation (hv) is present. If HV appears ill a reaction description,
the wavelength of the radiation may be specified on an auxiliary
information line (described below).

E The symbol E as a reactant and/or product is used to represent an
electron. An electron is treated just like any other species, and is
composed of the element E, which must be declared as element data. If
an E appears in any reaction, then it must also be declared as a species
in the species data and thermodynamic data must be supplied for it.

An exclamation mark means that any and all following characters are
comments on the reaction. For example the comment may be used to
give a reference to the source of the reaction and rate data.

The second field of the reaction line is used to define the Arrhenius rate coefficients Ai,
f3i, and Ei, in that order, as given by Eq. (52). At least one blank space must separate the
first number and the last symbol in the reaction. The three numbers must be separated
by at least one blank space, be stated in either integer, floating point, or E format (e.g.,
123 or 123.0 or 12.3E1), and have units associated with them. Unless modified by the
REACTION line, the default units for Ai are cgs (cm, sec, K, mole), the exact units
depending on the reaction. The factor f3i is dimensionless. The default units for the
activation energies are cal/mole.

Examples of some reaction data are shown in Figure 7, and Table IV is a summary of
the reaction data rules.
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REACTIONS

H2+02 = 20H
! H2 + 02 = OH + OH

H + 02 + M = H02 + M
! H + 02 + M = H02
! H + 02 = H02 + M
OH+ +H+E = H20
0+ HV = 0(*)
END

CAL/MOLE

1.7E13 0 47780. ! Ref. 21
1.7E13 0 47780. ! same as previous reaction,

commented to prevent a duplication error
2.0E15 0.000 -870.
2.0E15 0.000 -870.
2.0E15 0.000 -870.

1.E19 0 0.0
1.E15 O. O.

! END statement is optional;
< eof> condition is equivalent

Figure 7. Examples of Reaction Data.

TABLE IV. SUMMARY OF THE RULES FOR REACTION DATA

1. The first reaction line must start with the word REACTIONS (or REAC), and
may include units definition(s).

2. The reaction description can begin anywhere on the line. All blank spaces, except
those within Arrhenius coefficients, are ignored.

3. Each reaction description must have =, <=> or => between the last reactant and
the first product.

4. Each reaction description must be contained on one line.

5. Three Arrhenius coefficients must appear in order (Ai, f3i, and Ei) on each
Reaction line, separated from each other and from the reaction description by at
least one blank space; no blanks are allowed within the numbers themselves.

6. There cannot be more than three reactants or three products in a reaction.

7. Comments are any and all characters following an exclamation mark.
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Auxiliary Information Data

The format of an auxiliary information line is a character-string keyword followed by
a slash-delimited (j) field containing an appropriate number of parameters (either integer,
floating point, or E format).

If a reaction contains M as a reactant and/or product, auxiliary information lines may
follow the reaction line to specify enhanced third body efficiencies of certain species [i .e.,
aki, Eq. (58)]. To define an enhanced third body efficiency, the keyword is the species
name of the third body, and its one parameter is its enhanced efficiency factor. A species
that acts as an enhanced third body must be declared as a species.

If a pressure-dependent reaction is indicated by a (+M) or by a species contained
in parenthesis, say (+H20), then one or more auxiliary information lines must follow to
define the fall-off parameters. The Arrhenius coefficients Aoo , /300' and Eoo on the reaction
line are for the high-pressure limit. For all fall-off reactions an auxiliary information
line must follow to specify the low-pressure limit Arrhenius parameters. On this line the
keyword LOW must appear, with three rate parameters Ao, /30, and Eo [Eq. (60)]. There
are then three possible interpretations of the fall-off reaction:

To define the Lindemann8 formulation of a fall-off reaction, no additional fall-off
parameters are defined.

To define a Troe9 fall-off reaction, in addition to the LOW parameters, the
keyword TROE followed by three or four parameters must be included in the
following order: a, T***, T*, and T** [Eq.(68)]. The fourth parameter is optional
and if omitted, the last term in Eq. (68) is not used.

To define an SRI fall-off reaction, t in addition to the LOW parameters, the
keyword SRI followed by three or five parameters must be included in the
following order: a, b, c, d, and e (Eq. [69)]. The fourth and fifth parameters are
optional. If only the first three are stated, then by default d = 1 and e = O.

If a reaction contains HV as a reactant and/or product, an auxiliary information line
may follow the reaction to specify radiation wavelength. For the wavelength specifica­
tion, the keyword is HV and its one parameter is the wavelength in angstroms. This in­
formation is not used in the Gas-Phase Subroutine Library, but it is available to the user
through a subroutine call.

"For a reversible reaction, auxiliary information data may follow the reaction to
specify Arrhenius parameters for the reverse-rate expression. Here, the three Arrhenius
parameters (Ai, /3i, and Ed for the reverse rate must follow the keyword REV. Using

t SRI refers to the formulation of Stewart et al. 10 , who are at SRI International, Menlo
Park, CA.
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this option overrides the reverse rates that would be normally computed through the
equilibrium constant, Eq. (53).

It sometimes happens that two or more reactions can involve the same set of reactants
and products, but proceed through distinctly different processes. In these cases, it may
be appropriate to state a reaction mechanism that has two or more reactions that are
the same, but have different rate parameters. However, duplicate reactions are normally
considered errors by the Interpreter; if the user requires duplication (e.g., the same
reactants and products with different Arrhenius parameters), an auxiliary information
statement containing the keyword DUP (with no parameters) must follow the reaction
line of each duplicate reaction (including the first occurrence of the reaction that is
duplicated). For example, if the user wishes to specify different rate expressions for each
of three identical reactions, there must be three occurrences of the DUP keyword, one
following each of the reactions.

To specify Landau-Teller parameters, the keyword LT must be followed by two
parameters-the coefficients Bi and Ci from Eq. (72). The Arrhenius parameters Ai,
f3i, and Ei are taken from the numbers specified on the reaction line itself. If reverse
parameters are specified in a Landau-Teller reaction by a REV, the reverse Landau-Teller
parameters must also be defined, with the keyword RLT and two coefficients Bi and Ci for
the reverse rate.

Any number of auxiliary information lines may follow a reaction line, in any order,
and any number of keywords or enhanced third bodies* may appear on an auxiliary
information line; however, a keyword and its parameter(s) must appear on the same line.

Examples of equivalent ways to state auxiliary information are shown in Figure 8. The
above rules are summarized in Table V.

Problems Having No Reactions

In some problems only information about the elements and species is needed (e.g.,
chemical equilibrium computations). For these it is not necessary to include reaction
data. The Interpreter will create the LINKCK file, but it will not contain any reaction
information. Therefore, no subroutines in the Gas-Phase Subroutine Library that deal
with chemical reactions (e.g., chemical production rates) may be used.

* If more than ten species have enhanced third body efficiencies in anyone reaction, some
dimensioning needs to be changed in the Interpreter.
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REACTIONS CAL/MOLE

HCO+M=H+CO+M 0.250E+15 0.000 16802.000 ! Warnatz
CO/1.87/ H2/1.87/ CH4/2.81/ C02/3./ H20/5./

H + C2H4( + M) = C2H5( + M)
LOW / 6.369E27 -2.76 -54.0 /
H2/2/ CO/2/ C02/3/ H20/5/

CH3 + CH3( + M) = C2H6( + M)
LOW /3.18E41 -7.03 2762. /
TROE / 06041 6927. 132. /
H2/2/ CO/2/ C02/3/ H20/5/

CH3+ H( -rM) =CH4( +M)
LOW / 8.0E26 -3.0 0.0/
SRI / 0.45 797. 979. /
H2/2/ CO/2/ C02/3/ H20/5/

CH4 + H = CH3 + H2

0.221 E + 14 0.000 2066000! Michael
! Lindemann fall-off reaction

! enhanced third-body efficiencies

9.03E16 -1.18 654.

! TROE fall-off reaction, using 3 parameters
! enhanced third body efficiencies

6.0E16 -1.0 0.0

SRI fall-off reaction

1.25E14 0 1.190E4 ! Westbrook
REV/4.80E12 0 1.143E4/

! The following two reactions are acceptable duplicates:
H2+02 = 20H

DUPLICATE
H2+02 = 20H

DUPLICATE

H2(1) + H20(000) = H2(0) + H20(001)
LT/-6762.1/

END

1.7E13 0 47780

1.0E13 0 47000

2.89E15 0 0
Landau-Teller reaction

!END line is optional

Figure 8. Examples of Auxiliary Information Definitions.
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TABLE V. SUMMARY OF THE RULES FOR AUXILIARY INFORMATION DATA.

1. Auxiliary information lines may follow reaction lines that contain an M to specify
enhanced third-body efficiencies, a reaction that contains an HV to specify the
radiation wavelength, a reversible reaction to specify the reverse rate parameters
explicitly, or any reaction that specifies Landau-Teller parameters. Auxiliary
information must follow any duplicate reactions as well as all reactions that
indicate pressure-dependent behavior by (+M) (i.e., provide fall-off parameters).

2. A species may have only one enhanced third body efficiency associated with it in
anyone reaction.

3. Only one radiation wavelength may be declared in a reaction.

4. The order in which the enhanced third body declarations are given is the order in
which arrays of enhanced third body information are referenced in the subroutine
package.

5. There cannot be more than ten enhanced third bodies in a reaction.

6. Keyword declarations may appear anywhere on the line, in any order.

7. Any number of keywords may appear on a line and more than one line may be
used; however, a keyword and its parameter(s) must appear on the same line.

8. Keyword declarations that appear on the same line must be separated by at least
one blank space.

9. Any blank spaces between a keyword and the first slash are ignored and any
blanks between the slashes and parameter(s) are also ignored. However, no blank
spaces are allowed within a keyword or a parameter.

10. All characters following an exclamation mark are comments.

Error Checks

The Interpreter checks each input line for proper syntax and writes self-explanatory
diagnostic messages on logical file LOUT if errors are encountered. If an error condition
occurs, the Interpreter continues to read and diagnose the input, but an error flag is
written to the Linking file and Chemkin subroutine CKINIT will not initialize the work
arrays. Therefore, the input must be error free before any of the Chemkin subroutines can
be called.

The possibilities for an error condition are as follows:
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Element Data

Atomic weight for an element or isotope is not declared, and the element is not
found in the Interpreter's database.

Atomic weight has been declared, but not enclosed by two slashes (j).

If an element is declared twice, a diagnostic message is printed, but the duplicate
is simply eliminated from consideration and is not considered a fatal error.

There are more elements than the Interpreter is dimensioned for (10).

~peci~ata

If a species is declared twice, a diagnostic message is printed, the duplicate is
eliminated from consideration and is not considered a fatal error.

No thermodynamic data have been found for a declared species.

There are more species than the Interpreter is dimensioned for (100).

Thermodynamic Data

Thermodynamic Data are format sensitive and therefore provide possibilities for
error if not formatted exactly as described by Table III.

An element in the thermodynamic data for a declared species has not been
included in the element data.

With the THERMO ALL option, line 2 (Table III) is not found.

Reaction Data

A delimiter =>, <=>, or = between the reactants and the products is not found.

Three Arrhenius parameters are not found.

Reactants and/or products have not been properly delineated by a plus sign (+).

A species as a reactant or product has not been declared in the species data.

The reaction does not balance.

The charge of the reaction does not balance.

A reaction is a duplicate not declared by the auxiliary data keyword DUP.

A third-body species enclosed in parentheses in a fall-off reaction appears as
reactant or product, but not both.

The third-body reactant is not the same as the third-body product in a fall-off
reaction.

A species is a third-body in a fall-off reaction, and +M also appears in the
reaction.

More than one +M or third-body as reactants and/or products.

HV declared as a reactant and as a product.
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There are more reactions than the Interpreter is dimensioned for (500).

There are more then three reactants or three products.

Auxiliary Data

An unknown or misspelled keyword or enhanced third-body species name.

Parameters for a keyword not enclosed in slashes.

Wrong number of parameters for a keyword.

Duplicate keywords.

LOW, TROE, or SRI found after a reaction that did not have a species or M
enclosed in parentheses.

LOW not found after a fall-off reaction.

TROE and SRI both found.

LT and REV found for a Landau-Teller reaction, but RLT not found.

LT or REV given for a fall-off reaction.

There are more than ten enhanced third bodies.

45



v. QUICK REFERENCE GUIDE TO THE GAS-PHASE SUBROUTINE LIBRARY

This chapter is arranged by topical area to provide a quick reference to each of the
Gas-Phase Library Subroutines. In addition to the subroutine call list itself, the purpose
of the subroutine is briefly described. Where appropriate, the description refers to an
equation number in Chapter II. The page number given for each subroutine refers a
detailed description of the subroutine call in Chapter VI.

Mnemonics

There are some good rules of thumb for explaining the subroutine naming conventions.
All subroutines names begin with the letters CK so that Chemkin subroutines are easily
recognized and so that they are likely different from any user subroutine names. The four
remaining letters identify the purpose of the subroutine: The first one or two usually refer
to the variable that is being computed; the last letters refer to either the input variables or
the units.

State variables are denoted by P (pressure), T (temperature), Y (mass fraction), X
(mole fraction), and C (molar concentration). Thermodynamic properties are referred to
by CP and CV (specific heats), H (enthalpy), S (entropy), U (internal energy), G (Gibbs
free energy), and A (Helmholtz free energy). The thermodynamic property subroutines
may be called to return properties in mass units, denoted by MS or S as the last letter(s),
or in molar units, denoted by ML or L as the last letter(s). The letter B (for the bar
as in Cp ) in a thermodynamic property subroutine name indicates that it returns mean
properties.

Subroutines that return net chemical production rates have a W (for Wk) following
the CK, and routines that return creation and destruction rates or creation rates and
destruction times have a CD or a CT, respectively, following the CK. Rate-of-progress
variables are denoted by Q and equilibrium constants by EQ.

The mnemonics for the variable names in the subroutine calls are roughly the same as
for the subroutine names. However, because six letters Can be used (only four are available
in the subroutine names because CK occupies two), the mnemonics can be more explicit.

In most cases the subroutines are functionally identical with the corresponding
routines in the original Chemkin. However, there are some cases where either the
functionality is different or the call list is changed, but we have still used the same
subroutine name. These routines are identified by an asterisk.
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1. INITIALIZATION

SUBROUTINE CKINDX (ICKWRK, RCKWRK, MM, KK, II, NFlT)* 80
Returns a group of indices defining the size of the particular reaction
mechanism

SUBROUTINE CKINIT (LENIWK, LENRWK, LENCWK, LINC, LOUT, ICKWRK,
RCKWRK, CCKWRK)* 81

Reads the linking file and creates the internal work arrays ICKWRK,
RCKWRK, and CCKWRK. CKINIT must be called before any other
Chemkin subroutine is called. The work arrays must then be made
available as input to the other Chemkin subroutines.

2. INFORMATION ABOUT ELEMENTS

SUBROUTINE CKAWT (ICKWRK, RCKWRK, AWT) 61
Returns the atomic weights of the elements.

SUBROUTINE CKCOMP (1ST, IRAY, II, 1)* 64
Returns the index of an element of a reference character string array
which corresponds to a character string.

SUBROUTINE CKSYME (CCKWRK, LOUT, ENAME, KERR)* 95
Returns the character strings of element names.

3. INFORMATION ABOUT SPECIES

SUBROUTINE CKCHRG (lCKWRK, RCKWRK, KCHARG) 64
Returns the electronic charges of the species.

SUBROUTINE CKCOMP (1ST, IRAY, II, I) 64
Returns the index of an element of a reference character string array
which corresponds to a character string.

SUBROUTINE CKNCF (MDIM, ICKWRK, RCKWRK, NCF) 83
Returns the elemental composition of the species.

SUBROUTINE CKPHAZ (ICKWRK, RCKWRK, KPHASE) 85
Returns a set of flags indicating phases of the species.

SUBROUTINE CKSYMS (CCKWRK, LOUT, KNAME, KERR)* 96
Returns the character strings of species names.

SUBROUTINE CKWT (lCKWRK, RCKWRK, WT) 100
Returns the molecular weights of the species.
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4. INFORMATION ABOUT REACTIONS

SUBROUTINE CKABE (ICKWRK, RCKWRK, RA, RB, RE) 58
Returns the Arrhenius coefficients of the reactions; see Eq. (52).

SUBROUTINE CKITR (ICKWRK, RCKWRK, ITHB, IREV) 81
Returns a set of flags indicating whether the reactions are reversible
and whether they contain arbitrary third bodies.

SUBROUTINE CKNU (KDIM, ICKWRK, RCKWRK, NUKI) 84
Returns the stoichiometric coefficients of the reaction mechanism; see
Eq. (50).

SUBROUTINE CKRAEX (I, RCKWRK, RA) . 90
Returns the Pre-exponential coefficient of the Ith reaction, or changes
its value, depending on the sign of I.

SUBROUTINE CKSYMR (I, ICKWRK, RCKWRK, CCKWRK, LT, ISTR, KERR)* 96
Returns a character string which describes the Ith reaction, and the
effective length of the character string.

SUBROUTINE CKTHB (KDIM, ICKWRK, RCKWRK, AKI) 97
Returns matrix of enhanced third body coefficients; see Eq. (58).

SUBROUTINE CKWL (ICKWRK, RCKWRK, WL) 100
Returns a set of flags providing information on the wavelength of
photon radiation.

5. GAS CONSTANTS AND UNITS

SUBROUTINE CKRP (ICKWRK, RCKWRK, RU, RUC, PA) 92
Returns universal gas constants and the pressure of one standard
atmosphere.

82
given the molar

82
given the mole

83
given the mass

85
density,

SUBROUTINE CKMMWX (X, ICKWRK, RCKWRK, WTM)
Returns the mean molecular weight of the gas mixture
fractions; see Eq. (4).

SUBROUTINE CKMMWY (Y, ICKWRK, RCKWRK, WTM)
Returns the mean molecular weight of the gas mixture
fractions; see Eq. (3).

SUBROUTINE CKPC (RHO, T, C, ICKWRK, RCKWRK, P)
Returns the pressure of the gas mixture given the mass
temperature and molar concentrations; see Eq. (2).

6. EQUATION OF STATE

SUBROUTINE CKMMWC (C, ICKWRK, RCKWRK, WTM)
Returns the mean molecular weight of the gas mixture
concentrations; see Eq. (5).
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SUBROUTINE CKPX (RHO, T, X, ICKWRK, RCKWRK, P)
Returns the pressure of the gas mixture given the
temperature and mole fractions; see Eq. (1).

SUBROUTINE CKPY (RHO, T, Y, ICKWRK, RCKWRK, P)
Returns the pressure of the gas mixture given the
temperature and mass fractions; see Eq. (1).

SUBROUTINE CKRHOC (P, T, C, ICKWRK, RCKWRK, RHO)
Returns the mass density of the gas mixture given
temperature and molar concentrations; see Eq. (2).

SUBROUTINE CKRHOX (P, T, X, ICKWRK, RCKWRK, RHO)
Returns the mass density of the gas mixture given
temperature and mole fractions; see Eq. (2).

SUBROUTINE CKRHOY (P, T, Y, ICKWRK, RCKWRK, RHO)
Returns the mass density of the gas mixture given
temperature and mass fractions; see Eq. (2).

e.a.u
86

mass density,

86
mass density,

90
the pressure,

91
the pressure,

91
the pressure,

7. MOLE-MASS CONVERSION

SUBROUTINE CKCTX (C, ICKWRK, RCKWRK, X) 68
Returns the mole fractions given the molar concentrations; see
Eq. (13).

SUBROUTINE CKCTY (C, ICKWRK, RCKWRK, Y) 70
Returns the mass fractions given the molar concentrations; see
Eq. (12).

SUBROUTINE CKXTCP (P, T, X, ICKWRK, RCKWRK, C) 103
Returns the molar concentrations given the pressure, temperature and
mole fractions; see Eq. (10).

SUBROUTINE CKXTCR (RHO, T, X, ICKWRK, RCKWRK, C) 104
Returns the molar concentrations given the mass density, temperature
and mole fractions; see Eq. (11).

SUBROUTINE CKXTY (X, ICKWRK, RCKWRK, Y) 104
Returns the mass fractions given the mole fractions; see Eq. (9).

SUBROUTINE CKYTCP (P, T, Y, ICKWRK, RCKWRK, C) 105
Returns the molar concentrations given the pressure, temperature and
mass fractions; see Eq. (7).

SUBROUTINE CKYTCR (RHO,T, Y, ICKWRK, RCKWRK, C) 105
Returns the molar concentrations given the mass density, temperature
and mass fractions; see Eq. (8).

SUBROUTINE CKYTX (Y, ICKWRK, RCKWRK, X) 106
Returns the mole fractions given the mass fractions; see Eq. (6).
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8. THERMODYNAMIC PROPERTIES (NONDIMENSIONAL)

SUBROUTINE CKATHM (NDIM1, NDIM2, ICKWRK, RCKWRK, MAXTP,
NT, TMP, A) 60

Returns the coefficients of the fits for thermodynamic properties of
the species.

SUBROUTINE CKCPOR (T, ICKWRK, RCKWRK, CPOR) 66
Returns the nondimensional specific heats at constant pressure; see Eq.
(19).

SUBROUTINE CKHORT (T, ICKWRK, RCKWRK, HORT) 79
Returns the nondimensional enthalpies; see Eq. (20).

SUBROUTINE CKSOR (T, ICKWRK, RCKWRK, SOR) 95
Returns the nondimensional entropies; see Eq. (21).

9. THERMODYNAMIC PROPERTIES (MASS UNITS)

SUBROUTINE CKAMS (T, ICKWRK, RCKWRK, AMS) 60
Returns the standard state Helmholtz free energies in mass units; see
Eq. (32).

SUBROUTINE CKCPMS (T, ICKWRK, RCKWRK, CPMS) 66
Returns the specific heats at constant pressure in mass units; see
Eq. (26).

SUBROUTINE CKCVMS (T, ICKWRK, RCKWRK, CVMS) 73
Returns the specific heats at constant volume in mass units; see
Eq. (29).

SUBROUTINE CKGMS (T, ICKWRK, RCKWRK, GMS) 77
Returns the standard state Gibbs free energies in mass units; see
Eq.(31).

SUBROUTINE CKHMS (T, ICKWRK, RCKWRK, HMS) 79
Returns the enthalpies in mass units; see Eq. (27).

SUBROUTINE CKSMS (T, ICKWRK, RCKWRK, SMS) 94
Returns the standard state entropies in mass units; see Eq. (28).

SUBROUTINE CKUMS (T, ICKWRK, RCKWRK, UMS) 99
Returns the internal energies in mass units; see Eq. (30).
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10. THERMODYNAMIC PROPERTIES (MOLAR UNITS)

SUBROUTINE CKAML (T, ICKWRK, RCKWRK, AML) 59
Returns the standard state Helmholtz free energies in molar units; see
Eq. (25).

SUBROUTINE CKCPML (T, ICKWRK, RCKWRK, CPML) 65
Returns the specific heats at constant pressure in molar units

SUBROUTINE CKCVML (T, ICKWRK, RCKWRK, CVML) 72
Returns the specific heats in constant volume in molar units; see
Eq. (22).

SUBROUTINE CKGML (T, ICKWRK, RCKWRK, GML) 77
Returns the standard state Gibbs free energies in molar units; see
Eq. (24).

SUBROUTINE CKHML (T, ICKWRK, RCKWRK, HML) 79
Returns the enthalpies in molar units.

SUBROUTINE CKSML (T, ICKWRK, RCKWRK, SML) 93
Returns the standard state entropies in molar units

SUBROUTINE CKUML (T, ICKWRK, RCKWRK, UML) 98
Returns the internal energies in molar units; see Eq. (23).

11. MEAN THERMODYNAMIC PROPERTIES (MASS UNITS)

SUBROUTINE CKABMS (P, T, Y, ICKWRK, RCKWRK, ABMS)* 59
Returns the mean Helmholtz free energy of the mixture in mass units,
given the pressure, temperature and mass fractions; see Eq. (47).

SUBROUTINE CKCPBS (T, Y, ICKWRK, RCKWRK, CPBMS) 65
Returns the mean specific heat at constant pressure; see Eq. (34).

SUBROUTINE CKCVBS (T, Y, ICKWRK, RCKWRK, CVBMS) 72
Returns the mean specific heat at constant volume in mass units; see
Eq. (36).

SUBROUTINE CKGBMS (P, T, Y, ICKWRK, RCKWRK, GBMS)* 76
Returns the mean Gibbs free energy of the mixture in mass units,
given the pressure, temperature, and mass fractions; see Eq. (45)

SUBROUTINE CKHBMS (T, Y, ICKWRK, RCKWRK, HBMS) 78
Returns the mean enthalpy of the mixture in mass units; see Eq. (38).

SUBROUTINE CKSBMS (P, T, Y, ICKWRK, RCKWRK, SBMS)* 93
Returns the mean entropy of the mixture in mass units, given the
pressure, temperature and mass fractions; see Eq.(43).
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SUBROUTINE CKUBMS (T, Y, ICKWRK, RCKWRK, UBMS)
Returns the mean internal energy of the mixture in mass units; see
Eq. (40).

f..a..u
98

12. MEAN THERMODYNAMIC PROPERTIES (MOLAR UNITS)

SUBROUTINE CKABML (P, T, X, ICKWRK, RCKWRK, ABML)* 58
Returns the Helmholtz free energy of the mixture in molar units,
given the pressure, temperature, and mole fractions; see Eq. (46).

SUBROUTINE CKCPBL (T, X, ICKWRK, RCKWRK, CPBML) 65
Returns the mean specific heat at constant pressure; see Eq. (33).

SUBROUTINE CKCVBL (T, X, ICKWRK, RCKWRK, CVBML) 71
Returns the mean specific heat at constant volume in molar units; see
Eq. (35).

SUBROUTINE CKGBML (P, T, X, ICKWRK, RCKWRK, GBML)* 76
Returns the mean Gibbs free energy of the mixture in molar units,
given the pressure, temperature and mole fractions; see Eq. (44).

SUBROUTINE CKHBML (T, X, ICKWRK, RCKWRK, HBML) 78
Returns the mean enthalpy of the mixture in molar units; see Eq. (37).

SUBROUTINE CKSBML (P, T, X, ICKWRK, RCKWRK, SBML)* 92
Returns the mean entropy of the mixture in molar units, given the
pressure, temperature and mole fractions; see Eq. (42).

SUBROUTINE CKUBML (T, X, ICKWRK, RCKWRK, UBML) 97
Returns the mean internal energy of the mixture in molar units; see
Eq. (39).

13. CHEMICAL PRODUCTION RATES

SUBROUTINE CKCDC (T, C, ICKWRK, RCKWRK, CDOT, DDOT) 61
Returns the molar creation and destruction rates of the species given
the temperature and molar concentrations; see Eq. (73).

SUBROUTINE CKCDXP (P, T, X, ICKWRK, RCKWRK, CDOT, DDOT)
Returns the molar creation and destruction rates of the species
pressure, temperature and mole fractions; see Eq. (73).

SUBROUTINE CKCDXR (RHO, T, X, ICKWRK, RCKWRK, CDOT, DDOT)
Returns the molar creation and destruction rates of the species
the mass density, temperature and mole fractions; see Eq. (73).

SUBROUTINE CKCDYP (P, T, Y, ICKWRK, RCKWRK, CDOT, DDOT)
Returns the molar creation and destruction rates of the species
mass density, temperature and mass fractions; see Eq. (73).

62
given

62
given

63
given
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SUBROUTINE CKCOYR (RHO, T, Y, ICKWRK, RCKWRK, COOT, OOOT)
Returns the molar creation and destruction rates of the species given
the mass density, temperature and mass fractions; see Eq. (73).

~
63

SUBROUTINE CKCONT (K, Q, ICKWRK, RCKWRK, CIK)
Returns the contributions of the reactions to the molar production rate
of a species; see Eqs. (49) and (51).

64

SUBROUTINE CKCTC (T, C, ICKWRK, RCKWRK, COOT, TAU) 68
Returns the molar creation rates and characteristic destruction times
of the species given temperature and molar concentrations; see
Eqs. (76) and (78).

SUBROUTINE CKCTXP (P, T, X, ICKWRK, RCKWRK, COOT, TAU) 69
Returns the molar creation rates and characteristic destruction times
of the species given the pressure, temperature and mole fractions; see
Eqs. (76) and (78).

SUBROUTINE CKCTXR (RHO, T, X, ICKWRK, RCKWRK, COOT, TAU) 69
Returns the molar creation rates and characteristic destruction times
of the species given the mass density, temperature and mole fractions;
see Eqs. (76) and (78).

SUBROUTINE CKCTYP (P, T, Y, ICKWRK, RCKWRK, COOT, TAU) 70
Returns the molar creation rates and characteristic destruction times
of the species given the mass density, temperature and mass fractions;
see Eqs. (76) and (78).

99
the

101
the pressure,

101
the mass

102
the pressure,

102
the mass

SUBROUTINE CKCTYR (RHO, T, Y, ICKWRK, RCKWRK, COOT, TAU) 71
Returns the molar creation rates and characteristic destruction times
of the species given the mass density, temperature and mass fractions;
see Eqs. (76) and (78).

SUBROUTINE CKWC (T, C, ICKWRK, RCKWRK, WOOT)
Returns the molar production rates of the species given
temperature and molar concentrations; see Eq. (49).

SUBROUTINE CKWXP (P, T, X, ICKWRK, RCKWRK, WOOT)
Returns the molar production rates of the species given
temperature and mole fractions; see Eq. (49).

SUBROUTINE CKWXR (RHO, T, X, ICKWRK, RCKWRK, WOOT)
Returns the molar production rates of the species given
density, temperature and mole fractions; see Eq. (49).

SUBROUTINE CKWYP (P, T, Y, ICKWRK, RCKWRK, WOOT)
Returns the molar production rates of the species given
temperature and mass fractions; see Eq. (49).

SUBROUTINE CKWYR (RHO, T, Y, ICKWRK, RCKWRK, WOOT)
Returns the molar production rates of the species given
density, temperature and mass fractions; see Eq. (49).
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14. EQUILIBRIUM CONSTANTS AND RATE OF PROGRESS VARIABLES.

SUBROUTINE CKEQC (T, C, ICKWRK, RCKWRK, EQKC) 73
Returns the equilibrium constants of the reactions given temperature
and molar concentrations; see Eq. (54).

SUBROUTINE CKEQXP (P, T, X, ICKWRK, RCKWRK, EQKC) 74
Returns the equilibrium constants for the reactions given pressure,
temperature and mole fractions; see Eq. (54).

SUBROUTINE CKEQXR (RHO, T, X, ICKWRK, RCKWRK, EQKC) 74
Returns the equilibrium constants of the reactions given mass density,
temperature and mole fractions; see Eq. (54).

SUBROUTINE CKEQYP (P, T, Y, ICKWRK, RCKWRK, EQKC) 75
Returns the equilibrium constants for the reactions given pressure,
temperature and mass fractions; see Eq. (54).

SUBROUTINE CKEQYR (RHO, T, Y, ICKWRK, RCKWRK, EQKC) 75
Returns the equilibrium constants of the reactions given mass density,
temperature and mass fractions; see Eq. (54).

SUBROUTINE CKQC (T, C, ICKWRK, RCKWRK, Q) 87
Returns the rates of progress for the reactions given temperature and
molar concentrations; see Eqs. (51) and (58).

SUBROUTINE CKQXP (P, T, X, ICKWRK, RCKWRK, Q) 87
Returns the rates of progress for the reactions given pressure,
temperature and mole fractions; see Eqs. (51) and (58).

SUBROUTINE CKQXR (RHO, T, X, ICKWRK, RCKWRK, Q) 88
Returns the rates of progress for the reactions given mass density,
temperature and mole fractions; see Eqs. (51) and (58).

SUBROUTINE CKQYP (P, T, Y, ICKWRK, RCKWRK, Q) 88
Returns the rates of progress for the reactions given pressure,
temperature and mass fractions; see Eqs. (51) and (58).

SUBROUTINE CKQYR (RHO, T, Y, ICKWRK, RCKWRK, Q) 89
Returns the rates of progress for the reactions given mass density,
temperature and mass fractions; see Eqs. (51) and (58).
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15. UTILITIES

SUBROUTINE CKCRAY (LINE, NN, KRAY, LOUT, NF, NRAY, KERR) 67
This subroutine is called to parse a character string, LINE, that is
composed of several blank-delimited substrings. Each substring in
LINE is compared with an ordered reference array of character
strings, KRAY(*). For each substring in LINE that is also an entry in
KRAY(*), the index position in KRAY(*) is returned in the integer
array, NRAY(*). It is expected that each substring in LINE will be
found in KRAY(*). If a substring is not found in KRAY(*), an error
flag is returned. For example, after reading a line of species names, the
subroutine might be called to assign Chemkin species index numbers to
the list of species names, as is in the following example:

input: LINE ="OHN2 NO"
KRAY(*) ="H2" "02" "N2" "H" "0" "N" "OH" "H20" "NO"
NN = 9, the number of entries in KRAY(*)
LOUT = 6, a logical unit number for diagnostic messages.

output: NRAY(*) = 7, 3, 9, the index numbers of the entries in KRAY(*)
corresponding to the substrings in LINE.

NF = 3, the number of correspondences found.
KERR = .FALSE.

SUBROUTINE CKI2CH (NUM, STR, I, KERR) 80
Returns the character string representation of an integer, and the
effective length of the string.

SUBROUTINE CKNPAR (LINE, NPAR, LOUT, IPAR, ISTART, KERR) 84
This subroutine is called to parse a character string, LINE, that is
composed of several blank-delimited substrings. The final segment of
LINE containing NPAR substrings is found, beginning in the 1START
column; this segment is then copied into the character string IPAR.
This allows format-free input of combined alpha-numeric data. For
example, after reading a line containing alpha-numeric information
ending with several numbers, the subroutine might be called to find
the segment of a line containing specific numbers:

input: LINE
NPAR

output: IPAR
ISTART

= "t1 t2 dt 300.0 3.0E3 50"
= 3, the number of substrings requested
= "300.0 3.0E3 50"
= 11, the starting column in LINE of the NPAR

substrings

SUBROUTINE CKR2CH (RNUM, STR, I, KERR) 89
Returns the character string representation of a real number, and the
effective length of the string.
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f.uj:
SUBROUTINE CKSNUM (LINE,NEXP,LOUT,KRAY,NN,KNUM,NVAL,RVAL,KERR) 94

This subroutine is called to parse a character string, LINE, that is
composed of several blank-delimited substrings. It is expected that the
first substring in LINE is also an entry in a reference array of
character strings, KRAY(*), in which case the index position in
KRAY(*) is returned as KNUM, otherwise an error flag is returned. The
substrings following the first are expected to represent numbers, and
are converted to elements of the array RVAL(*). If NEXP substrings are
not found, an error flag will be returned. This allows format-free input
of combined alpha-numeric data. For example, after reading a line
containing a species name followed by several numerical values, the
subroutine might be called to find a Chemkin species index and convert
the other substrings to real values:

input: LINE = "N2 1.2"
NEXP = 1, the number of values expected
LOUT = 6, a logical unit number on which to write diagnostic

messages.
KRAY(*) = "H2" "02" "N2" "H" "0" "N" "OH" "H20" "NO"
NN = 9, the number of entries in KRAY(*)

output: KNUM

NVAL

RVAL(*)
KERR

= 3, the index number of the element in KRAY(*)
which corresponds to the first substring in LINE

= 1, the number of values found in LINE following the
first substring

= 1.200E+00, the substring converted to a number
=.FALSE.

SUBROUTINE CKSUBS (LINE, LOUT, NDIM, SUB, NFOUND, KERR) 95
Returns an array of the blank-delimited substrings in a character
string, and the number of substrings found.

SUBROUTINE CKXNUM (LINE, NEXP, LOUT, NVAL, RVAL, KERR) 103
This subroutine is called to parse a character string, LINE, that is
composed of several blank-delimited substrings. Each substring is
expected to represent a number, which is converted to entries in the
array of real numbers, RVAL(*). NEXP is the number of values
expected, and NVAL is the number of values found. If NEXP values are
required, the user can compare NVAL against NEXP and decide how to
proceed. This allows format-free input of numerical data. For example:

input: LINE
NEXP
LOUT

= " 0.170E+14 0 47780.0"
= 3, the number of values requested
= 6, a logical unit number for diagnostic messages.

output: NVAL = 3, the number of values found
RVAL(*) = 1.700E+13, O.OOOE+OO, 4.778E+04
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VI. ALPHABETICAL LISTING OF THE GAS-PHASE SUBROUTINE LIBRARY
WITH DETAILED DESCRIPTIONS OF THE CALL LISTS

Each subroutine in the Gas-Phase Subroutine Library is described in this chapter,
together with a detailed description of the variables in the call lists. For all arrays,
information is given on the required dimensioning in the calling program. For all variables
having units, the cgs units are stated. In many cases a reference to the most applicable
equation in Chapter II is also given.

In most cases the subroutines are functionally identical with the corresponding
routines in the original Chemkin. However, there are some cases where either the
functionality is different or the call list is changed, but we have still used the same
subroutine name. These routines are identified by an asterisk.
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CKABE CKABE CKABE CKABE CKABE CKABE CKABE

****************.*********
******

SUBROUTINE CKABE (ICKWRK, RCKWRK. RA. RB, RE)
Returns the Arrhenius coefficients of the reactions; see Eq. (52).

INPUT
ICKWRK - Array of integer workspace

Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
RA

RB

RE

- Pre-exponential constants for the reactions.
cgs units - mole-cm-sec-K
Data type - real array
Dimension RA(-) at least II, the total number of reactions.

- Temperature dependence exponents for the reactions
cgs units - none
Data type - real array
Dimension RB(-) at least II, the total number of reactions.

- Activation energies for the reactions.
cgs units - kelvins
Data type - real array
Dimension RE(*) at least II. the total number of reactions.

CKABML CKABML CKABML CKABML CKABML CKABML CKABML

**********-***************
******

SUBROUTINE CKABML (P. T, X. ICKWRK, RCKWRK, ABML)*
Returns the Helmholtz free energy of the mixture in molar units. given
the pressure, temperature, and mole fractions; see Eq. (46).

INPUT
P - Pressure.

cgs units - dynes/cm**2
Data type - real scalar

T - Temperature.
cgs units - kelvins
Data type - real scalar

X - Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(-) at least KK. the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
ABML - Mean Helmholtz free energy in molar units

cgs units - ergs/mole
Data type - real scalar



CKABMS CKABMS CKABMS CKABMS CKABMS CKABMS CKABMS

Y

T

INPUT
P

*x*********~****.*****************************

**************************
******

SUBROUTINE CKABMS (P, T, Y, ICKWRK, RCKWRK, ABMS)*
Returns the mean Helmholtz free energy of the mixture in mass units.
given the pressure, temperature and mass fractions; see Eq. (47).

- Pressure.
cgs units - dynes/cm**2
Data type - real scalar

- Temperature.
cgs units - kelvins
Data type - real scalar

- Mass fractions of the species.
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
ABMS - Mean Helmholtz free energy in mass units.

cgs units - ergs/gm
Data type - real scalar

CKAML CKAML CKAML CKAML CKAML CKAML CKAML
**********************************************

*****~**.*****************

******
SUBROUTINE CKAML (T, ICKWRK, RCKWRK, AML)

Returns the standard state Helmholtz free energies in molar units;
see Eq. (25).

INPUT
T - Temperature.

cgs units - kelVins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
AML Standard state Helmholtz free energies in molar units

for the species.
cgs units - ergs/mole
Data type - real array
Dimension AML(*) at least KK. the total number of species.



CKAMS CKAMS CKAMS CKAMS CKAMS CKAMS CKAMS
**********************************************

***-**********************
******

SUBROUTINE CKAMS (T, ICKWRK, RCKWRK, AMS)
Returns the standard state Helmholtz free energies in mass
units; see Eq. (32).

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
AMS - Standard state Helmholtz free energies in mass units

for the species.
cgs units - ergs/gm
Data type - real array
Dimension AMS(*) at least KK, the total number of species.

CKATHM CKATHM CKATHM CKATHM CKATHM CKATHM CKATHM
***************~*~**********************~*****

*********-****************
*****»:

SUBROUTINE CKATHM (NDIM1, NDIM2, ICKWRK, RCKWRK, MAXTP. NT, TMP, A)
Returns the coefficients of the fits for thermodynamic properties
of the species:see Eqs. (19) - (21).

INPUT
NDIM1 - First dimension of the three-dimensional array of thermodynamic

fit coefficients, A; NDIM1 must be at least NCP2, the total
number of coefficients for one temperature range.

NDIM2 - Second dimension of the three-dimensional array of
thermodynamic fit coefficients, A; NDIM2 must be at
least MXPT-1, the total number of temperature ranges.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
NT

TMP

A

- Number of temperatures used for fitting coefficients of
thermodynamic properties for the species.

Data type - integer array
Dimension NT(*) at least KK, the total number of species.

- Common temperatures dividing the thermodynamic fits for
the species.

cgs units - kelvins
Data type - real array
Dimension TMP(MAXT,*) exactly MAXT for the first
dimension (the maximum number of temperatures
allowed for a species) , and at least KK for the
second dimension (the total number of species)

- Three dimensional array of fit coefficients to the
thermodynamic data for the species
The indices in A(N,L,K) mean-
N 1,NN are polynomial coefficients in CP/R

CP/R(K)=A(1,L.K) + A(2,L,K)*T + A(3,L,K)*T**2 + ...
N NN+ 1 is a6 in Eq. (20).
N NN+ 2 i s a 7 in Eq . (21).
L 1 ... MXTP-1 is for each temperature range.
K is the species index

Data type - real array
Dimension A(NPCP2,NDIM2,*) exactly NPCP2 and MXTP-1
for the first and second dimensions and at least
KK for the third.



CKAWT CKAWT CKAWT CKAWT CKAWT CKAWT CKAWT
****************~*****************************

**************************
******

SUBROUTINE CKAWT (ICKWRK, RCKWRK. AWT)
Returns the atomic weights of the elements

INPUT
ICKWRK - Array of integer workspace

Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
AWT - Atomic weights of the elements.

cgs units - gm/mole
Data type - real array
Dimension AWT(*) at least MM, the total number of
elements in the problem.

CKCDC CKCDC CKCDC CKCDC CKCDC CKCDC CKCDC
**********************************************

**************************

******

SUBROUTINE CKCDC (T, C, ICKWRK, RCKWRK, CDOT, DDOT)
Returns the molar creation and destruction rates of the species
given the temperature and molar concentrations; see Eq. (73).

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

C - Molar concentrations of the species.
cgs units - mole/cm**3
Data type - real array
Dimension C(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
CDOT

ODOT

- Chemical molar creation rates of the species.
cgs units - mole/(cm**3*sec)
Data type - real array
Dimension CDOT(*) at least KK, the total number of species.

Chemical molar destruction rates of the species.
cgs units - moles/(cm**3*sec)
Data type - real array
Dimension DDOT(*) at least KK, the total number of species.
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CKCOXP CKCDXP CKCDXP CKCDXP CKCDXP CKCOXP CKCOXP

X

T

INPUT
P

**********************************************
**************************

******

SUBROUTINE CKCDXP (P, T, X, ICKWRK, RCKWRK, COOT, OOOT)
Returns the molar creation and destruction rates of the species
given pressure, temperature and mole fractions; see Eq. (73).

- Pressure.
cgs units - dynes/cm**2
Data type - real scalar

- Temperature.
cgs units - kelvins
Data type - real scalar

- Mole fractions of the species.
cgs units - none
Oata type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
COOT

Door

- Chemical molar creation rates of the species.
cgs units - mole/(cm**3*sec)
Data type - real array
Dimension CDOT(*) at least KK, the total number of species.

Chemical molar destruction rates of the species.
cgs units - moles/(cm**3*sec)
Data type - real array
Dimension DDOT(*) at least KK, the total number of species.

CKCOXR CKCDXR CKCDXR CKCDXR CKCDXR CKCDXR CKCOXR
***********_***************x******************

**************************

******

SUBROUTINE CKCDXR (RHO, T, X, ICKWRK, RCKWRK, COOT, DOOT)
Returns the molar creation and destruction rates of the species
given the mass density, temperature and mole fractions; see Eq. (73).

INPUT
RHO - Mass density.

cgs units - gm/cm**3
Data type - real scalar

T - Temperature.
cgs units - kelvins
Data type - real scalar

X - Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
COOT

ODOT

- Chemical molar creation rates of the species.
cgs units - mole/(cm**3*sec)
Data type - real array
Dimension COOT(*) at least KK, the total number of species.

Chemical molar destruction rates of the species.
cgs units - moles/(cm**3*sec)
Data type - real array
Dimension OOOT(*) at least KK. the total number of species.



CKCDYP CKCDYP CKCDYP CKCDYP CKCDYP CKCDYP CKCDYP
**********************************************

**************************
******

SUBROUTINE CKCDYP (P, T, Y, ICKWRK, RCKWRK, CDOT, DDOT)
Returns the molar creation and destruction rates of the species
given mass density, temperature and mass fractions; see Eq. (73).

INPUT
P - Pressure,

cgs units - dynes/cm**2
Data type - real scalar

T - Temperature.
cgs units - kelvins
Data type - real scalar

Y - Mass fractions of the species.
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
COOT

DDOT

- Chemical molar creation rates of the species.
cgs units - mole/(cm**3*sec)
Data type - real array
Dimension CDOT(*) at least KK, the total number of species.

Chemical molar destruction rates of the species.
cgs units - moles/(cm**3*sec)
Data type - real arrav
Dimens10n DDOT(*) at least KK, the total number of species.

********************.~************************

**********~**.************

******

CKCDYR CKCDYR CKCDYR CKCDYR CKCDYR CKCDYR CKCDYR

Y

T

INPUT
RHO

SUBROUTINE CKCDYR (RHO, T, Y, ICKWRK, RCKWRK, COOT, DDOT)
Returns the molar creation and destruction rates of the species
given the mass density, temperature and mass fractions: see Eq. (73).

- Mass density,
cgs units - gm/cm**3
Data type - real scalar

- Temperature.
cgs units - kelvins
Data type - real scalar

- Mass fractions of the species.
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
COOT

DDOT

- Chemical molar creation rates of the species.
cgs units - mole/(cm**3*sec)
Data type - real array
Dimension CDOT(*) at least KK, the total number of species.

Chemical molar destruction rates of the species.
cgs units - moles/(cm**3*sec)
Data type - real array
Dimension DDOT(*) at least KK, the total number of species.



CKCHRG CKCHRG CKCHRG CKCHRG CKCHRG CKCHRG CKCHRG

**************************

******

SUBROUTINE CKCHRG (ICKWRK, RCKWRK, KCHARG)
Returns the electronic charges of the species

INPUT
ICKWRK - Array of integer workspace

Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
KCHARG - Electronic charges o~ the species; KCHARG(K)=-2

indicates that the Kth species has two excess electrons.
Data type - integer array
Dimension KCHARG(*) at least KK, the total number of
species.

CKCOMP CKCOMP CKCOMP CKCOMP CKCOMP CKCOMP CKCOMP
******************.***************************

**************************
******

SUBROUTINE CKCOMP (IST, IRAY, II, 1)*
Returns the index of an element of a reference character string array
that corresponds to a character string; leading and trailing blanks are
ignored.

INPUT
1ST

IRAY

II

OUTPUT
I

- A character string
Data type - CHARACTER*(*)

- An array of character strings
Data type - CHARACTER*(*)
Dimension at least II

- The length of IRAY
Data type - integer scaler.

The first integer location in IRAY in which 1ST corresponds to
IRAY(I); if 1ST is not also an entry in IRAY, then 1= O.

CKCONT CKCONT CKCONT CKCONT CKCONT CKCONT CKCONT
**********************************************

**************************

******
SUBROUTINE CKCONT (K, Q, ICKWRK, RCKWRK, CIK)

Returns the contributions of the reactions to the molar
production rate of a species; see Eqs. (49) and (51).

INPUT
K Integer species number.

Data type - integer scalar
Q - Rates of progress for the reactions.

cgs units - moles/(cm**3*sec)
Data type - real array
Dimension Q(*) at least II, the total number of reactions.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
CIK Contributions of the reactions to the molar production

rate of the Kth species
cgs units - mole/(cm**3*sec)
Data type - real array
Dimension CIK(*) at least II, the total number of
reactions.
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**~***********.************~******************

************~*************

******

CKCPBL CKCPBL CKCPBL CKCPBL CKCPBL CKCPBL CKCPBL

SUBROUTINE CKCPBL (T, X, ICKWRK, RCKWRK, CPBML)
Returns the mean specific heat at constant pressure; see Eq. (33).

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

X - Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
CPBML - Mean specific heat at constant pressure in molar units.

cgs units - ergs/(mole*K)
Data type - real scalar

*********x************************************
**************************

******

CKCPBS CKCPBS CKCPBS CKCPBS CKCPBS CKCPBS CKCPBS

SUBROUTINE CKCPBS (T, Y, ICKWRK, RCKWRK, CPBMS)
Returns the mean specific heat at constant pressure; see Eq. (34).

INPUT
T Temperature.

cgs units - kelvins
Data type - real scalar

Y - Mass fractions of the species.
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
CPBMS - Mean specific heat at constant pressure in mass units.

cgs units - ergs/(gm*K)
Data type - real scalar

CKCPML CKCPML CKCPML CKCPML CKCPML CKCPML CKCPML
**********************************************

**************************
******

SUBROUTINE CKCPML (T, ICKWRK, RCKWRK, CPML)
Returns the specific heats at constant pressure in molar units.

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
CPML - Specific heats at constant pressure in molar units

for the species.
cgs units - ergs/(mole*K)
Data type - real array
Dimension CPML(*) at least KK, the total number of species.



CKCPMS CKCPMS CKCPMS CKCPMS CKCPMS CKCPMS CKCPMS
**********************************************

**************************
*****'1':

SUBROUTINE CKCPMS (T, ICKWRK, RCKWRK, CPMS)
Returns the specific heats at constant pressure in mass units;
see Eq. (26).

INPUT
T - Temperature.

cgs units - kelvins
Data type real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
CPMS Specific heats at constant pressure in mass units

for the species.
cgs units - ergs/(gm*K)
Data type - real array
Dimension CPMS(*) at least KK, the total number of species.

********~******~******************************

**************************
***-**

CKCPOR CKCPOR CKCPOR CKCPOR CKCPOR CKCPOR CKCPOR

SUBROUTINE CKCPOR (T, ICKWRK, RCKWRK, CPOR)
Returns the nondimensional specific heats at constant pressure;
see Eq. (19).

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
CPOR - Nondimensional specific heats at constant pressure

for the species.
cgs units - none
Data type - real array
Dimension CPOR(*) at least KK, the total number of species.

66



CKCRAY CKCRAY CKCRAY CKCRAY CKCRAY CKCRAY CKCRAY
*.****.*****************.*********************

*-************************
******

SUBROUTINE CKCRAY (LINE, NN, KRAY, LOUT, NF, NRAY, KERR)
This SUbroutine is called to parse a character string, LINE, that is
composed of several blank-del imited substrings. Each substring in LINE
is compared with an ordered reference array of character strings,
KRAY(~). For each substring in LINE that is also an entry in KRAY(*),
the index position in KRAY(*) is returned in the integer array, NRAY(*).
It is expected that each substring in LINE will be found in KRAY(*). If
a substring cannot be found in KRAY(*) an error flag will be returned.
For example, after reading a line of species names, the subroutine
might be called to assign Chemkin species index numbers to the list of
species names. This application is made more concrete in the following
example:

input: LINE
KRAY(*)
NN
LOUT

output: NRAY(*)

NF
KERR

"OH N2 NO"
IIH2 11 1102 11 IIN2 11 I'H lt 110 11 IIN'I IIOH ll "H20 1' IINO'I
9, the number of entries in KRAY(*)
6, a logical unit number on Which to write
diagnostic messages.
7, 3, 9, the index numbers of the entries
in KRAY(*) corresponding to the substrings
in LINE
3, the number of correspondences found.
.FALSE.

INPUT
LINE
KRAY
NN

LOUT

- A character string.
- An array of character strings.

Total number of character strings in KRAY
Data type - integer scalar

- Output unit for error messages
Data type - integer scalar

OUTPUT
NRAY - Index numbers of the elements of KRAY which

correspond to the substrings in LINE
Data type - integer array

NF - Number of correspondences found.
Data type - integer scalar

KERR - Error flag.
Data type - logical



CKCTC CKCTC CKCTC CKCTC CKCTC CKCTC CKCTC

C

INPUT
T

**************************
*****.

SUBROUTINE CKCTC (T, C, ICKWRK, RCKWRK, COOT, TAU)
Returns the molar creation rates and characteristic destruction
times of the species given temperature and molar concentrations;
see Eqs. (76) and (78).

- Temperature.
cgs units - kelvins
Data type - real scalar

- Molar concentrations of the species.
cgs units - mole/cm**3
Data type - real array
Dimension C(x) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
COOT

TAU

- Chemical molar creation rates of the species.
cgs units - mole/(cm**3~sec)

Data type - real array
Dimension CDOT(~) at least KK, the total number of species.

Characteristic destruction times of the species.
cgs units - sec
Data type - real array
Dimension TAU(x) at least KK, the total number of species.

******~***************************************

**************************
******

CKCTX CKCTX CKCTX CKCTX CKCTX CKCTX CKCTX

SUBROUTINE CKCTX (C, ICKWRK, RCKWRK, X)
Returns the mole fractions given the molar concentrations; see Eq. (13).

ICKWRK -

RCKWRK -

INPUT
C

OUTPUT
X

Molar concentrations of the species.
cgs units - mole/cm~*3

Data type - real array
Dimension C(*) at least KK, the total number of species.

Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

- Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.
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CKCTXP CKCTXP CKCTXP CKCTXP CKCTXP CKCTXP CKCTXP

T

x

INPUT
P

****~****.****************************.*******

***********************~**

**** ••

SUBROUTINE CKCTXP (P. T, X, ICKWRK, RCKWRK, COOT. TAU)
Returns the molar creation rates and characteristic destruction
times of the species given the pressure, temperature and mole
fractions; see Eqs. (76) and (78)

- Pressure.
cgs units - dynes/cm**2
Data type - real scalar

- Temperature.
cgs units - kelvins
Data type - real scalar

- Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
COOT

TAU

- Ch~mical molar creation rates of the species.
cgs units - mole/(cm**3*sec)
Data type - real array
Dimension CDOT(*) at least KK, the total number of species.

Characteristic destruction times of the species.
cgs units - sec
Data type - real array
Dimension TAU(*) at least KK, the total number of species.

CKCTXR CKCTXR CKCTXR CKCTXR CKCTXR CKCTXR CKCTXR

T

x

INPUT
RHO

*************** •• **********************.******
**************************

******
SUBROUTINE CKCTXR (RHO, T, X, ICKWRK, RCKWRK, COOT, TAU)

Returns the molar creation rates and characteristic destruction
times of the species given the mass density, temperature and
mole fractions; see Eqs. (76) and (78).

- Mass density.
cgs units - gm/cm**3
Data type - real scalar

- Temperature.
cgs units - kelvins
Data type - real scalar

- Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
COOT

TAU

- Chemical molar creation rates of the species.
cgs units - mole/(cm**3*sec)
Data type - real array
Dimension CDOT(*) at least KK, the total number of species.

Characteristic destruction times of the species.
cgs units - sec
Data type - real array
Dimension TAU(*) at least KK, the total number of species.



**********************************************
**************************

******

CKCTY CKCTY CKCTY CKCTY CKCTY CKCTY CKCTY

SUBROUTINE CKCTY (C, ICKWRK, RCKWRK, Y)
Returns the mass fractions given the molar concentrations; see Eq. (12).

INPUT
C - Molar concentrations of the species.

cgs units - mole/cm**3
Data type - real array
Dimension C(o) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(.) at least LENRWK.

OUTPUT
Y - Mass fractions of the species.

cgs units - none
Data type - real array
Dimension y(.) at least KK, the total number of species.

CKCTYP CKCTYP CKCTYP CKCTYP CKCTYP CKCTYP CKCTYP
************************************.*.*******

********.-****************
******

SUBROUTINE CKCTYP (P, T, Y, ICKWRK, RCKWRK, COOT, TAU)
Returns the molar creation rates and characteristic destruction
times of the species given the mass density, temperature and
mass fractions; see Eqs. (76) and (78).

INPUT
P - Pressure.

cgs units - dynes/cm**2
Data type - real scalar

T - Temperature.
cgs units - kelvins
Data type - real scalar

Y - Mass fractions of the species.
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
COOT

TAU

- Chemical molar creation rates of the species.
cgs units - mole/(cm**3*sec)
Data type - real array
Dimension CDOT(*) at least KK, the total number of species.

Characteristic destruction times of the species.
cgs units - sec
Data type - real array
Dimension TAU(*) at least KK, the total number of species.



**********************************************
**************************

*.****

CKCTYR CKCTYR CKCTYR CKCTYR CKCTYR CKCTYR CKCTYR

Y

T

INPUT
RHO

SUBROUTINE CKCTYR (RHO, T, Y, ICKWRK, RCKWRK, COOT, TAU)
Returns the molar creation rates and characteristic destruction
times of the species given the mass density, temperature and
mass fractions; see Eqs. (76) and (78).

- Mass density.
cgs units - gm/cm**3
Data type - real scalar

- Temperature.
cgs units - kelvins
Data type - real scalar

- Mass fractions of the species.
cgs units - none
Data type - real array
Dimension Y(*) at least KK. the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
COOT

TAU

- Chemical molar creation rates of the species.
cgs units - mole/(cm**3*sec)
Data type - real array
Dimension CDOT(*) at least KK, the total number of species.

- Characteristic destruction times of the speCies.
cgs units - sec
Data type - real array
Dimension TAU(*) at least KK, the total number of species.

CKCVBL CKCVBL CKCVBL CKCVBL CKCVBL CKCVBL CKCVBL
**********************************************

**************************
******

SUBROUTINE CKCVBL (T. X, ICKWRK, RCKWRK, CVBML)
Returns the mean specific heat at constant volume in molar units;
see Eq. (35).

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

X - Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
CVBML - Mean specific heat at constant volume in molar units.

cgs units - ergs/(mole*K)
Data type - real scalar
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CKCVBS CKCVBS CKCVBS CKCVBS CKCVBS CKCVBS CKCVBS

~*************************

******

SUBROUTINE CKCVBS (T, Y, ICKWRK, RCKWRK, CVBMS)
Returns the Mean specific heat at constant volume in mass units;
see Eq. (36).

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

Y - Mass fractions of the species
cgs units - none
Data type - real array
Dimension Y(~) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
CVBMS - Mean specific heat at constant volume in mass units

cgs units - ergs/(gm*K)
Data type - real scalar

CKCVML CKCVML CKCVML CKCVML CKCVML CKCVML CKCVML

~.************************

******

SUBROUTINE CKCVML (T, ICKWRK, RCKWRK, CVML)
Returns the specific heats in constant volume in molar units;
see Eq. (22).

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
CVML - Specific heats at constant volume in molar units

for the species.
cgs units - ergs/(mole*K)
Data type - real array
Dimension CVML(*) at least KK, the total number of species.

72



CKCVMS CKCVMS CKCVMS CKCVMS CKCVMS CKCVMS CKCVMS
**********************************.***********

**************************
******

SUBROUTINE CKCVMS (T, ICKWRK, RCKWRK, CVMS)
Returns the specific heats at constant volume in mass units;
see Eq. (29),

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK,

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK,

OUTPUT
CVMS - Specific heats at constant volume in mass units

for the species,
cgs units - ergs/(gm*K)
Data type - real array
Dimension CVMS(*) at least KK, the total number of species.

CKEQC CKEQC CKEQC CKEQC CKEQC CKEQC CKEQC
**********************************************

**************************
******

SUBROUTINE CKEQC (T, C, ICKWRK, RCKWRK, EQKC)
Returns the equilibrium constants of the reactions given
temperature and molar concentrations; see Eq. (54)

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

C - Molar concentrations of the speCies
cgs units - mole/cm**3
Data type - real array
Dimension C(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
EQKC - Equil ibrium constants in concentration units for the reactions:

cgs units - (mole/cm**3)**some power, depending on
the reaction.

Data type - real array
Dimension EQKC(*) at least II, the total number of
reactions.



CKEQXP CKEQXP CKEQXP CKEQXP CKEQXP CKEQXP CKEQXP

T

x

INPUT
P

*******~******************

******

SUBROUTINE CKEQXP (P, T, X, ICKWRK, RCKWRK, EQKC)
Returns the equil ibrium constants for the reactions given
pressure, temperature and mole fractions; see Eq. (54).

- Pressure.
cgs units - dynes/cm**2
Data type - real scalar

- Temperature.
cgs units - kelvins
Data type - real scalar

- Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
EQKC - Equilibrium constants in concentration units for the reactions:

cgs units - (mole/cm**3)**some power, depending on the
reaction.

Data type - real array
Dimension EQKC(*) at least II, the total number of
reactions.

CKEQXR CKEQXR CKEQXR CKEQXR CKEQXR CKEQXR CKEQXR

T

X

INPUT
RHO

**************************
******

SUBROUTINE CKEQXR (RHO, T, X, ICKWRK, RCKWRK, EQKC)
Returns the equil ibrium constants of the reactions given mass
density, temperature and mole fractions; see Eq. (54).

- Mass density.
cgs units - gm/cm**3
Data type - real scalar

- Temperature.
cgs units - kelvins
Data type - real scalar

- Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
EQKC - Equilibrium constants in concentration units for the reactions:

cgs units - (mole/cm**3)**some power, depending on the
reaction.

Data type - real array
Dimension EQKC(*) at least II, the total number of
reactions.
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CKEQYP CKEQYP CKEQYP CKEQYP CKEQYP CKEQYP CKEQYP

y

T

INPUT
P

*****~****************************************

**************************

******

SUBROUTINE CKEQYP (P, T, Y, ICKWRK, RCKWRK, EQKC)
Returns the equilibrium constants for the reactions given
pressure, temperature and mass fractions; see Eq. (54).

- Pressure.
cgs units - dynes/cm**2
Data type - real scalar

- Temperature.
cgs units - kelvins
Data type - real scalar

- Mass fractions of the species.
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
EQKC - Equilibrium constants in concentration units for the reactions:

cgs units - (mole/cm**3)**some power, depending on the
reaction.

Data type - real array
Dimension EQKC(*) at least II, the total number of
reactions.

CKEQYR CKEQYR CKEQYR CKEQYR CKEQYR CKEQYR CKEQYR

~******~******************

******
SUBROUTINE CKEQYR (RHO, T, Y, ICKWRK, RCKWRK, EQKC)

Returns the equilibrium constants of the reactions given mass
density, temperature and mass fractions; see Eq. (54).

INPUT
RHO - Mass density.

cgs units - gm/cm**3
Data type - real scalar

T - Temperature.
cgs units - kelvins
Data type - real scalar

Y - Mass fractions of the species.
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
EQKC - Equilibrium constants in concentration units for the reactions

cgs units - (mole/cm**3)**some power, depending on the
reaction.

Data type - real array
Dimension EQKC(*) at least II. the total number of
reactions.



CKGBML CKGBML CKGBML CKGBML CKGBML CKGBML CKGBML

*******-******************
******

SUBROUTINE CKGBML (P, T, X. ICKWRK. RCKWRK. GBML)*
Returns the mean Gibbs free energy of the mixture in molar units.
given the pressure. temperature and mole fractions; see Eqc (44).

INPUT
P - Pressure.

cgs units - dynes/cm**2
Data type - real scalar

T - Temperature.
cgs units - kelvins
Data type - real scalar

X - Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(~) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
GBML - Mean Gibbs free energy in molar units.

cgs units - ergs/mole
Data type - real scalar

CKGBMS CKGBMS CKGBMS CKGBMS CKGBMS CKGBMS CKGBMS

**************************
******

SUBROUTINE CKGBMS (P, T. Y, ICKWRK. RCKWRK, GBMS)-
Returns the mean Gibbs free energy of the mixture in mass units.
given the pressure, temperature. and mass fractions; see Eq. (45).

INPUT
P - Pressure.

cgs units - dynes/cm**2
Data type - real scalar

T - Temperature.
cgs units - kelvins
Data type - real scalar

Y - Mass fractions of the species.
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
GBMS - Mean Gibbs free energy in mass units.

cgs units - ergs/gm
Data type - real scalar



********************~*************************

**************************
*****--

CKGML CKGML CKGML CKGML CKGML CKGML CKGML

SUBROUTINE CKGML (T, ICKWRK, RCKWRK, GML)
Returns the standard state Gibbs free energies in molar units;
see Eq. (24).

INPUT
T - Temperature.

cgs units - kelvins
Data type real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

DUTPUT
GML - Standard state gibbs free energies in molar units

for the species.
cgs units - ergs/mole
Data type - real array
Dimension GML(*) at least KK, the total number of species.

*************************~**~*****************

**************************
*****:11:.

CKGMS CKGMS CKGMS CKGMS CKGMS CKGMS CKGMS

SUBROUTINE CKGMS (T, ICKWRK, RCKWRK, GMS)
Returns the standard state Gibbs free energies in mass units;
see Eq. (31).

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
GMS Standard state Gibbs free energies in mass units

for the species:
cgs units - ergs/gm
Data type - real array
Dimension GMS(*) at least KK, the total number of species.
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CKHBML CKHBML CKHBML CKHBML CKHBML CKHBML CKHBML

x

INPUT
T

***********.**************
******

SUBROUTINE CKHBML (T. X. ICKWRK, RCKWRK, HBML)
Returns the mean enthalpy of the mixture in molar units; see Eq. (37).

- Temperature.
cgs units - kelvins
Oata type - real scalar

- Mole fractions of the species
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
HBML - Mean enthalpy in molar units:

cgs units - ergs/mole
Data type - real scalar.

CKHBMS CKHBMS CKHBMS CKHBMS CKHBMS CKHBMS CKHBMS

**************************
**** ••

SUBROUTINE CKHBMS (T, Y, ICKWRK, RCKWRK, HBMS)
Returns the mean enthalpy of the mixture in mass units; see Eq. (38).

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

Y - Mass fractions of the species
cgs units - none
Data type - real array
Dimension Y(*) at least KK. the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
HBMS - Mean enthalpy in mass units:

cgs units - ergs/gm
Data type - real scalar.



~***********.*********************************

**************************

******

CKHML CKHML CKHML CKHML CKHML CKHML CKHML

SUBROUTINE CKHML (T, ICKWRK, RCKWRK, HML)
Returns the enthalpies in molar units

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
HML Enthalpies in molar units for the species

cgs units - ergs/mole
Data type - real array
Dimension HML(-) at least KK, the total number of species.

CKHMS CKHMS CKHMS CKHMS CKHMS CKHMS CKHMS
***************************************-******

**********~***************

******

SUBROUTINE CKHMS (T, ICKWRK, RCKWRK, HMS)
Returns the enthalpies in mass units; see Eq. (27).

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
HMS - Enthalpies in mass units for the species.

cgs units - ergs/gm
Data type - real array
Dimension HMS(*) at least ~K, the total number of species.

**********************************************
**************************

******

CKHORT CKHORT CKHORT CKHORT CKHORT CKHORT CKHORT

SUBROUTINE CKHORT (T, ICKWRK, RCKWRK, HORT)
Returns the nondimensional enthalpies; see Eq. (20).

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
HORT Nondimensional enthalpies for the species

cgs units - none
Data type - real array
Dimension HORT(*) at least KK, the total number of species.



CKI2CH CKI2CH CKI2CH CKI2CH CKI2CH CKI2CH CKI2CH

**************************
******

SUBROUTINE CKI2CH (NUM, STR, I, KERR)
Returns a character string representation of an integer
and the effective length of the string.

INPUT
NUM

OUTPUT
STR

KERR

A number to be converted to a character string; the maximum
magnitude of NUM is machine dependent:

Data type - integer scalar.

- A left-justified character string representing NUM:
Data type - integer scalar.

- The effective length of the character string:
Data type - integer scalar.

Error flag; character length errors will result in KERR=.TRUE.
Data type - logical.

****************-.****************************
**************************

******

CKINDX CKINDX CKINDX CKINDX CKINDX CKINDX CKINDX

SUBROUTINE CKINDX (ICKWRK, RCKWRK. MM. KK, II, NFIT)*
Returns a group of indices defining the size of the particular
reaction mechanism.

INPUT
ICKWRK - Array of integer workspace

Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
MM

KK

II

NFIT

- Total number of elements in mechanism.
Qata type - integer scalar

- Total number of species in mechanism.
Data type - integer scalar

- Total number of reactions in mechanism.
Data type - integer scalar

- number of coefficients in fits to thermodynamic data
for one temperature range; NFIT = number of
coefficients in polynomial fits to CP!R + 2.

Data type - integer scalar



CKINIT CKINIT CKINIT CKINIT CKINIT CKINIT CKINIT
**********************************************

**************************
~*****

SUBROUTINE CKINIT (LENIWK, LENRWK, LENCWK, LINC, LOUT, ICKWRK,
RCKWRK, CCKWRK)*

Reads the linking file and creates the internal work arrays ICKWRK,
CCKWRK, and RCKWRK. CKINIT must be called before any other CHEMKIN
subroutine is called. The work arrays must then be made available
as input to the other CHEMKIN sUbroutines.

INPUT
LENIWK - Length of the integer work array, ICKWRK:

Data type - integer scalar
LENCWK - Length of the character work array, CCKWRK

The minimum length of CCKWRK(*) is MM + KK:
Data type - integer scalar

LENRWK - Length of the real work array, WORK:
Data type - integer scalar

LINC Logical file number for the linking file:
Data type - integer scalar

LOUT Output file for printed error messages:
Data type - integer scalar

OUTPUT
ICKWRK - Array of integer workspace

Data type - integer array
Dimension ICKWRK(*) at least LENIWK

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

CCKWRK - Array of character work space.
Data type - CHARACTER*16 array
Dimension CCKWRK(*) at least LENCWK.

CKITR CKITR CKITR CKITR CKITR CKITR CKITR
**********************************************

**************************

******

SUBROUTINE CKITR (ICKWRK, RCKWRK, ITHB, IREV)
Returns a set of flags indicating whether the reactions are
reversible or whether they contain arbitrary third bodies.

INPUT
ICKWRK - Array of integer workspace

Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
ITHB

IREV

- Third-body flags for the reactions;
ITHB(I)= -1 reaction I is not a third-body reactions
ITHB(I)= 0 reaction I is is a third-body reaction with

no enhanced third body efficiencies
ITHB(I)= N reaction I is a third-body reaction with

N species enhanced third-body efficiencies.
Data type - integer array
Dimension ITHB(*) at least II, the total number of
reactions.

- Reversibility flags and number of species
(reactants plus products) for reactions.

IREV(I)=+N, reversible reaction I has N species
IREV(I)=-N, irreversible reaction I has N species

Data type - integer array
Dimension IREV(*) at least II, the total number of
reactions.
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CKMMWC CKMMWC CKMMWC CKMMWC CKMMWC CKMMWC CKMMWC
********************.*************************

**************************

******

SUBROUTINE CKMMWC (C, ICKWRK, RCKWRK, WTM)
Returns the mean molecular weight of the gas mixture given the
molar concentrations; see Eq. (5).

RCKWRK -

ICKWRK -

INPUT
C

OUTPUT
WTM

Molar concentrations of the species.
cgs units - mole!cm**3
Data type - real array
Dimension C(*) at least KK, the total number of species.

Array of integer workspace
Data type - integer array
Dimension ICKWRK(~) at least LENIWK.

Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

- Mean molecular weight of the species mixture.
cgs units - gm!mole
Data type - real scalar

**.**~.**************************.*.******.**.

**************************
******

CKMMWX CKMMWX CKMMWX CKMMWX CKMMWX CKMMWX CKMMWX

SUBROUTINE CKMMWX (X, ICKWRK, RCKWRK, WTM)
Returns the mean molecular weight of the gas mixture given the
mole fractions; see Eq. (4).

INPUT
X - Mole fractions of the species.

cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(~) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
WTM - Mean molecular weight of the species ~ixture.

cgs units - gm!mole
Data type - real scalar



***.********~~********************************

**************************
**)j(***

CKMMWY CKMMWY CKMMWY CKMMWY CKMMWY CKMMWY CKMMWY

SUBROUTINE CKMMWY (Y. ICKWRK, RCKWRK, WTM)
Returns the mean molecular weight of the gas mixture given the
mass fractions; see Eq. (3).

INPUT
Y - Mass fractions of the species.

cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(~) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(~) at least LENRWK.

OUTPUT
WTM - Mean molecular weight of the species mixture.

cgs units - gm/mole
Data type - real scalar

********~***.*********************************

**************************
******

CKNCF CKNCF CKNCF CKNCF CKNCF CKNCF CKNCF

SUBROUTINE CKNCF (MDIM. ICKWRK, RCKWRK, NCF)
Returns the elemental composition of the species.

INPUT
MDIM - First dimension of the two-dimensional array NCF;

MDIM must be equal to or greater than the number of
elements, MM.

Data type - integer scalar
ICKWRK - Array of integer workspace

Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
NCF - Matrix of the elemental composition of the species;

NCF(M,K) is the number of atoms of the Mth element
in the Kth species

Data type - integer array
Dimension NCF(MDIM,*) exactly MDIM (at least MM.
the total number of elements in the problem) for
the first dimension and at least KK. the total
number of species, for the second.



CKNPAR CKNPAR CKNPAR CKNPAR CKNPAR CKNPAR CKNPAR

KERR

output: IPAR
ISTART

**********************************************
**************************

*****.

SUBROUTINE CKNPAR (LINE, NPAR, LOUT, IPAR, ISTART, KERR)
This sUbroutine is called to parse a character string, LINE, that is
composed of several blank-delimited substrings. That final segment of LINE
containing NPAR sUbstrings is found, beginning in the ISTART column; this
segment is then copied into the character string IPAR. This allows
format-free input of combined alpha-numeric data. For example, after
reading a line containing alpha-numeric information ending with several
numbers, the sUbroutine might be called to find the segment of the 1 ine
containing the numbers:
input: LINE "t1, t2, dt 300.0 3.0E3 50"

NPAR 3, the number of substrings requested
LOUT 6, a logical unit number on which to write diagnostic

messages.
"300.0 3.0E3 50"
13, the starting column in LINE of the
NPAR substrings
.FALSE.

INPUT
LINE

NPAR

LOUT

- A character string
Data type - CHARACTER*(*)

- Number of SUbstrings expected
Data type - integer scalar

- Output unit for printed diagnostics
Data type - integer scalar

OUTPUT
IPAR - A character string containing only the NPAR substrings.
ISTART - The starting location in LINE of the NPAR substrings.

KERR - Error flag; an error in syntax or character length will result
in KERR = .TRUE.

Data type - logical.

**********************************************
**************************

)f:****~

CKNU CKNU CKNU CKNU CKNU CKNU CKNU

SUBROUTINE CKNU (KDIM, ICKWRK, RCKWRK, NUKI)
Returns the stoichiometric coefficients of the reaction mechanism;
see Eq. (50).

INPUT
KDIM - First dimension of the two-dimensional array NUKI; KOIM must

be greater than or equal to the total number of species, KK.
Data type - integer scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
NUKI Matrix of stoichiometric coefficients for the species in the

reactions; NUKI(K,I) is the stoichiometric coefficient of
species K in reaction I.

Data type - integer array
Dimension NUKI(KDIM,*) exactly KDIM (at least KK, the
total number of species) for the first dimension and at
least II for the second, the total number of reactions.
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CKPC CKPC CKPC CKPC CKPC CKPC CKPC

T

c

INPUT
RHO

**********************************************
**************************

******

SUBROUTINE CKPC (RHO, T, C, ICKWRK, RCKWRK, P)
Returns the pressure of the gas mixture given the mass density,
temperature and molar concentrations; see Eq. (2).

- Mass density.
cgs units - gm/cm**3
Data type - real scalar

- Temperature.
cgs units - kelvins
Data type - real scalar

- Molar concentrations of the species
cgs units - mole/cm**3
Data type - real array
Dimension C(*) at least KK, the total number of species.

lCKWRK - Array of integer workspace
Data type - integer array
Dimension lCKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
P - Pressure.

cgs units - dynes/cm**2
Data type - real scalar

**********************************************
**************************

******

CKPHAZ CKPHAZ CKPHAZ CKPHAZ CKPHAZ CKPHAZ CKPHAZ

SUBROUTINE CKPHAZ (ICKWRK, RCKWRK, KPHASE)
Returns a set of flags indicating phases of the species.

INPUT
ICKWRK - Array of integer workspace

Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
KPHASE - Phases of the species;

KPHASE(K)=-1 the Kth species is solid
KPHASE(K)= 0 the Kth species is gaseous
KPHASE(K)=+1 the Kth species is liquid

Data type - integer array
Dimension KPHASE(*) at least KK, the total number of
species.



CKPX CKPX CKPX CKPX CKPX CKPX CKPX

T

x

INPUT
RHO

**********~******.************.********* •• ****
**************************

******

SUBROUTINE CKPX (RHO, T, X. ICKWRK, RCKWRK, P)
Returns the pressure of the gas mixture given the mass density,
temperature and mole fractions; see Eq. (1).

- Mass density.
cgs units - gm/cm**3
Data type - real scalar

- Temperature.
cgs units - kelvins
Data type - real scalar

- Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
P - Pressure.

cgs units - dynes/cm**2
Data type - real scalar

**********~***********************************

.*~***~*******************

******

CKPY CKPY CKPY CKPY CKPY CKPY CKPY

SUBROUTINE CKPY (RHO, T, Y, ICKWRK, RCKWRK, P)
Returns the pressure of the gas mixture given the mass density,
temperature and mass fractions; see Eq. (1).

INPUT
RHO - Mass density.

cgs units - gm/cm**3
Data type - real scalar

T - Temperature.
cgs units - kelvins
Data type - real scalar

Y - Mass fractions of the species.
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
P - Pressure.

cgs units - dynes/cm**2
Data type - real scalar



****~*****************************************

CKQC CKQC CKQC CKQC CKQC CKQC CKQC

**************************

******
SUBROUTINE CKQC (T, C, ICKWRK. RCKWRK, Q)

Returns the rates of progress for the reactions given
temperature and molar concentrations; see Eqs. (51) and (58).

INPUT
T - Temperature.

cgs units - kelvins
Data type - real scalar

C - Molar concentrations of the species.
cgs units - mole/cm**3
Data type - real array
Dimension C(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(~) at least LENRWK.

OUTPUT
Q - Rates of progress for the reactions.

cgs units - moles/(cm**3*sec)
Data type - real array
Dimension Q(*) at least II, the total number of reactions.

CKQXP CKQXP CKQXP CKQXP CKQXP CKQXP CKQXP

T

X

INPUT
P

**~***********************

******
SUBROUTINE CKQXP (P, T, X, ICKWRK, RCKWRK, Q)

Returns the rates of progress for the reactions given pressure,
temperature and mole fractions; see Eqs. (51) and (58).

- Pressure.
cgs units - dynes/cm**2
Data type - real scalar

- Temperature.
cgs units - kelvins
Data type - real scalar

- Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
Q - Rates of progress for the reactions.

cgs units - moles/(cm~*3*sec)

Data type - real array
Dimension Q(*) at least II, the total number of reactions.



**********************************************
CKQXR CKQXR CKQXR CKQXR CKQXR CKQXR CKQXR

T

x

INPUT
RHO

**************************

******
SUBROUTINE CKQXR (RHO, T, X, ICKWRK, RCKWRK, Q)

Returns the rates of progress for the reactions given mass
density, temperature and mole fractions; see Eqs. (51) and (58).

- Mass density.
cgs units - gm/cm**3
Data type - real scalar

- Temperature.
cgs units - kelvins
Data type - real scalar

- Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
Q - Rates of progress for the reactions.

cgs units - moles/(cm**3*sec)
Data type - real array
Dimension Q(*) at least II, the total number of reactions.

CKQYP CKQYP CKQYP CKQYP CKQYP CKQYP CKQYP

Y

T

INPUT
P

**************************
******

SUBROUTINE CKQYP (P, T, Y, ICKWRK, RCKWRK. Q)
Returns the rates of progress for the reactions given pressure.
temperature and mass fractions; see Eqs. (51) and (58).

- Pressure.
cgs units - dynes/cm**2
Data type - real scalar

- Temperature.
cgs units - kelVins
Data type - real scalar

- Mass fractions of the species.
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
Q - Rates of progress for the reactions.

cgs units - moles/(cm**3*sec)
Data type - real array
Dimension Q(*) at least II, the total number of reactions.



CKQYR CKQYR CKQYR CKQYR CKQYR CKQYR CKQYR
**********************************************

*********~****************

",*****

SUBROUTINE CKQYR (RHO, T, Y, ICKWRK, RCKWRK. Q)
Returns the rates of progress for the reactions given mass
density, temperature and mass fractions; see Eqs. (51) and (58).

INPUT
RHO - Mass density.

cgs units - gm/cm**3
Data type - real scalar

T - Temperature.
cgs units - kelvins
Data type - real scalar

Y - Mass fractions of the species.
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
Q - Rates of progress for the reactions.

cgs units - moles/(cm**3*sec)
Data type - real array
Dimension Q(*) at least II, the total number of reactions.

**~*******************************************

**************************
******

CKR2CH CKR2CH CKR2CH CKR2CH CKR2CH CKR2CH CKR2CH

SUBROUTINE CKR2CH (RNUM. STR. I. KERR)
Returns a character string representation of a real number
and the effective length of the string.

INPUT
RNUM

OUTPUT
STR

KERR

The number to be converted to a string; the maximum magnitude
is machine dependent:

Data type - real scalar.

- A left-justified character string representing RNUM, with five
to ten characters, depending on the input value, e.g ..
RNUM 0.0 returns STR - " 0.00"
RNUM -10.5 returns STR - "-1.05E+01"
RNUM 1.86E-100 returns STR -" 1.86E-100"

Data type - CHARACTER*(*)
The minimum length of STR is 5.

- The effective length of STR.
Data type - integer scalar.

Error flag; a character-length error will result in KERR-.TRUE.
Data type - logical.
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CKRAEX CKRAEX CKRAEX CKRAEX CKRAEX CKRAEX CKRAEX
*********~~~*****.*****************.**********

**************************
*)lC****

SUBROUTINE CKRAEX (I, RCKWRK, RA)
Get/put the pre-exponential coefficient of the Ith reaction.

INPUT
I - Reaction number; I> 0 gets RA(I) from RCKWRK

1< 0 puts RA(I) into RCKWRK
Data type - integer scalar

RCKWRK - Array of real work space
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

If I < 1, then
RA - Pre-exponential coefficient for the Ith reaction

cgs units - mole-cm-sec-K
Data type - real scalar

OUTPUT
If I >
RA

1, then
- Pre-exponential coefficient for Ith reaction

cgs units - mole-cm-sec-K
Data type - real scalar.

CKRHOC CKRHOC CKRHOC CKRHOC CKRHOC CKRHOC CKRHOC

**************************

*.****

SUBROUTINE CKRHOC (P, T, C, ICKWRK, RCKWRK, RHO)
Returns the mass density of the gas mixture given the pressure,
temperature and molar concentrations; see Eq. (2).

INPUT
P - Pressure.

cgs units - dynes/cm**2
Data type - real scalar

T - Temperature.
cgs units - kelvins
Data type - real scalar

C - Molar concentrations of the species.
cgs units - mole/cm**3
Data type - real array
Dimension C(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
RHO - Mass density.

cgs units - gm/cm**3
Data type - real scalar
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~********************************************.

****** ••• *****************
******

CKRHOX CKRHOX CKRHOX CKRHOX CKRHOX CKRHOX CKRHOX

T

X

INPUT
P

SUBROUTINE CKRHOX (P, T, X, ICKWRK, RCKWRK, RHO)
Returns the mass density of the gas mixture given the pressure,
temperature and mole fractions; see Eq. (2).

- Pressure.
cgs units - dynes/cm**2
Data type - real scalar

- Temperature.
cgs units - kelvins
Data type - real scalar

- Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
RHO - Mass density.

cgs units - gm/cm**3
Data type - real scalar

CKRHOY CKRHOY CKRHOY CKRHOY CKRHOY CKRHOY CKRHOY
**********************************************

**************************
******

SUBROUTINE CKRHOY (P, T, Y, ICKWRK, RCKWRK, RHO)
Returns the mass density of the gas mixture given the pressure,
temperature and mass fractions; see Eq. (2).

INPUT
P - Pressure.

cgs units - dynes/cm**2
Data type - real scalar

T - Temperature.
cgs units - kelvins
Data type - real scalar

Y - Mass fractions of the species.
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
RHO - Mass density.

cgs units - gm/cm**3
Data type - real scalar
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CKRP CKRP CKRP CKRP CKRP CKRP CKRP
****************.*******.*********************

**************************
******

SUBROUTINE CKRP (ICKWRK, RCKWRK, RU, RUC, PAl
Returns universal gas constants and the pressure of one standard
atmosphere.

INPUT
ICKWRK - Array of integer workspace

Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(~) at least LENRWK.

OUTPUT
RU

RUC

PA

- Universal gas constant.
cgs units - 8.314E7 ergs/(mole*K)
Data type - real scalar

- Universal gas constant used only in conjuction with
activation energy

preferred units - 1.987 cal/(mole*K)
Data type - real scalar

- Pressure of one standard atmosphere.
cgs units - 1.01325E6 dynes/cm**2
Data type - real scalar

CKSBML CKSBML CKSBML CKSBML CKSBML CKSBML CKSBML
~*********~***~*******************************

**************************
******

SUBROUTINE CKSBML (P, T, X, ICKWRK, RCKWRK, SBML)*
Returns the mean entropy of the mixture in molar units, given the
pressure, temperature and mole fractions; see Eq. (42).

INPUT
P - Pressure.

cgs units - dynes/cm*~2

Data type - real scalar
T - Temperature.

cgs units - kelvins
Data type - real scalar

X - Mole fractions of the species.
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
SBML - Mean entropy in molar units.

cgs units - ergs/(mole*K)
Data type - real scalar



CKSBMS CKSBMS CKSBMS CKSBMS CKSBMS CKSBMS CKSBMS
**********************************************

**************************
******

SUBROUTINE CKSBMS (P, T, Y, ICKWRK. RCKWRK, SBMS)*
Returns the mean entropy of the mixture in mass units, given the
pressure, temperature and mass fractions; see Eq. (43).

INPUT
P - Pressure

cgs units - dynes/cm~*2

Data type - real scalar
T - Temperature.

cgs units - kelvins
Data type - real scalar

Y - Mass fractions of the species
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(~) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

DUTPUT
SBMS - Mean entropy in mass units

cgs units - ergs/(gm*K)
Data type - real scalar

**********************************************
CKSML CKSMl CKSMl CKSMl CKSML CKSMl CKSMl

***.*****-****************
******

SUBROUTINE CKSML (T, ICKWRK, RCKWRK, SML)
Returns the standard state entropies in molar units.

INPUT
T - Temperature

cgs units - kelvins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
SML - Standard state entropies in molar units for the species.

cgs units - ergs/(mole*K)
Data type - real array
Dimension SMl(*) at least KK, the total number of species.



CKSMS CKSMS CKSMS CKSMS CKSMS CKSMS CKSMS

**x*************~*******.*

*****'"

SUBROUTINE CKSMS (T, ICKWRK, RCKWRK, SMS)
Returns the standard state entropies in mass units: see Eq. (28).

INPUT
T - Temperature

cgs units - kelvins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
SMS Standard state entropies in mass units for the species.

cgs units - ergs!(gm*K)
Data type - real array
Dimension SMS(*) at least KK, the total number of species.

CKSNUM CKSNUM CKSNUM CKSNUM CKSNUM CKSNUM CKSNUM
*~*.**********************"'*******************

**.***~********X**********

******

SUBROUTINE CKSNUM (LINE,NEXP,LOUT,KRAY,NN,KNUM,NVAL,RVAL,KERR)
This SUbroutine is called to parse a character string, LINE, that is
composed of several blank-delimited substrings. It is expected that the
first substring in LINE is also an entry in a reference array of character
strings, KRAY(*), in which case the index position in KRAY(*) is returned
as KNUM: otherwise an error flag is returned. The substrings following the
first are expected to represent numbers and are converted to elements of
the array RVAL(*). If NEXP sUbstrings are not found, an error flag is
returned. This allows format-free input of combined alpha-numeric data.
For example, after reading a line containing a species name followed by
several numerical values, the subroutine might be called to find a Chemkin
species index and convert the other sUbstrings to real values:

KRAY(*)
NN

output: KNUM

input: LINE
NEXP
LOUT

NVAL

RVAL(*)
KERR

"N2 1 . 2"
1, the number of values expected
6, a logical unit number on which to write
diagnostic messages
"H2 11 1102 11 llN2 11 IlH II 110 11 IIN" "OH II IlH20 lt liND I!

9, the number of entries in KRAY(*)
3, the index number of the substring in KRAY(*),
which corresponds to the first substring in LINE
1, the number of values found in LINE
following the first substring
1.200E+OO, the substring converted to a number
.FALSE.

INPUT
LINE

NEXP

LOUT

KRAY

NN

OUTPUT
KNUM

NVAL

RVAL

KERR

- A character string
Data type - CHARACTER*80

- Number of real values to be found in character string
Data type - integer scalar

- Output unit for error messages.
Data type - integer scalar

- Array of character strings
Data type - CHARACTER*(*)

Total number of character strings fn KRAY
Data type - integer scalar

Index number of character string in array which
corresponds to the first substring in LINE

Data type - integer scalar
- Number of real values found in LINE

Data type - integer scalar
- Array of real values found in LINE

Data type - real array
- Error flag: KERR=.TRUE. if there is a syntax or dimensioning

error, the corresponding string is not found, or the total of
values found is not the number of values expected.

Data type - logical.
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CKSOR CKSOR CKSOR CKSOR CKSOR CKSOR CKSOR
**********************************************

**************************
****.*

SUBROUTINE CKSOR (T. ICKWRK, RCKWRK, SOR)
Returns the nondimensional entropies; see Eq. (21).

INPUT
T - Temperature

cgs units - kelvins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
SOR - Nondimensional entropies for the species.

cgs units - none
Data type - real array
Dimension SOR(*) at least KK, the total number of species.

CKSUBS CKSUBS CKSUBS CKSUBS CKSUBS CKSUBS CKSUBS
**********************************************

**************************
*****~

SUBROUTINE CKSUBS (LINE, LOUT, NDIM. SUB. NFOUND, KERR)
Returns an array of SUbstrings in a character string with blanks
as the del imiter.

INPUT
LINE

LOUT
NDIM

OUTPUT
SUB

NFOUND

KERR

- A character string
Data type - CHARACTER*(*)

- Output unit for printed diagnostics.
- Dimension of array SUB(*)*(*)

An array of the character substrings of LINE
Data type - CHARACTER*(*) array
Dimension of SUB(*) at least NDIM.

- Number of sUbstrings found in LINE
Data type - integer

- Error flag; KERR=.TRUE. if there are dimensioning errors
Data type - logical.

CKSYME CKSYME CKSYME CKSYME CKSYME CKSYME CKSYME
**********************************************

**************************
******

SUBROUTINE CKSYME (CCKWRK, LOUT, ENAME, KERR)*
Returns the character strings of element names.

INPUT
CCKWRK - Array of character work space

Data type - character array
Dimension CCKWRK(*) at least LENCWK.

LOUT - Output unit for printed diagnostics
Data type - integer scalar

OUTPUT
ENAME

KERR

- Element names
Data type - CHARACTER*(*)* array
Dimension ENAME at least MM, the total number of
elements in the problem.

- Error flag; KERR=.TRUE. if there is a character length error
Data type - logical.



********x*************************************
CKSYMR CKSYMR CKSYMR CKSYMR CKSYMR CKSYMR CKSYMR

**************************
******

SUBROUTINE CKSYMR (I, ICKWRK, RCKWRK, CCKWRK, LT, ISTR, KERR)*
Returns a character string which describes the Ith reaction,
and the effective length of the character string.

INPUT
I - Reaction index.

Data type - integer scalar
ICKWRK - Array of integer workspace

Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

CCKWRK - Array of character work space
Data type - CHARACTER*16 array
Dimension CCKWRK(*) at least LENCWK.

OUTPUT
ISTR

LT

KERR

- Character string describing the Ith reaction
Data type - CHARACTER*(*)

- Number of characters in the reaction description.
Data type - integer scalar

- Error flag; KERR=.TRUE. if there is a character-length error
Data type - logical.

CKSYMS CKSYMS CKSYMS CKSYMS CKSYMS CKSYMS CKSYMS

**************************
•• ****

SUBROUTINE CKSYMS (CCKWRK, LOUT, KNAME, KERR).
Returns the character strings of species names.

INPUT
CCKWRK - Array of character work space

Data type - CHARACTER*16 array
Dimension CCKWRK(*) at least LENCWK.

OUTPUT
KNAME - Species names

Data type - CHARACTER(*) array
Dimension KNAME(*) at least KK, the total number of species.

KERR - Error flag; KERR=.TRUE. if there is a character-length error
Data type - logical.



**********************************************
**************************

******

CKTHB CKTHB CKTHB CKTHB CKTHB CKTHB CKTHB

SUBROUTINE CKTHB (KDIM, ICKWRK, RCKWRK, AKI)
Returns matrix of enhanced third body coefficients; see Eq. (58).

INPUT
KDIM - First dimension of the two dimensional array AKI;

KDIM must be greater than or equal to the total
number of species, KK

Data type - integer scalar
ICKWRK - Array of integer workspace

Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
AKI - Matrix of enhanced third body efficiencies of the

species in the reactions; AKI(K,I) is the enhanced
efficiency of the Kth species in the Ith reaction

Data type - real array
Dimension AKI(KDIM,*) exactly KDIM (at least KK,
the total number of species) for the first
dimension and at least II for the second. the total
number of reactions.

CKUBML CKUBML CKUBML CKUBML CKUBML CKUBML CKUBML
-**************************--*****************

***************~**********

******

SUBROUTINE CKUBML (T, X, ICKWRK, RCKWRK, UBML)
Returns the mean internal energy of the mixture in molar units;
see Eq. (39).

INPUT
T - Temperature

cgs units - kelvins
Data type - real scalar

X - Mole fractions of the species
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
UBML - Mean internal energy in molar units:

cgs units - ergs/mole
Data type - real scalar.



CKUBMS CKUBMS CKUBMS CKUBMS CKUBMS CKUBMS CKUBMS

y

INPUT
T

********~.*~***********X**

******.

SUBROUTINE CKUBMS (T, Y, ICKWRK, RCKWRK, UBMS)
Returns the mean internal energy of the mixture in mass units;
see Eq. (40).

- Temperature
cgs units - kelvins
Data type - real scalar

- Mass fractions of the species
cgs units - none
Data type - real array
Dimension Y(~) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(~) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(.) at least LENRWK.

OUTPUT
UBMS - Mean internal energy in mass units:

cgs units - ergs/gm
Data type - real scalar.

CKUML CKUML CKUML CKUML CKUML CKUML CKUML

********~*******w.*********

******
SUBROUTINE CKUML (T, ICKWRK, RCKWRK, UML)

Returns the internal energies in molar units; see Eq. (23).

INPUT
T - Temperature

cgs units - kelvins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(.) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(.) at least LENRWK.

OUTPUT
UML - Internal energies in molar units for the species.

cgs units - ergs/mole
Data type - real array
Dimension UML(*) at least KK, the total number of species.
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CKUMS CKUMS CKUMS CKUMS CKUMS CKUMS CKUMS
********************************************~*

**************************
******

SUBROUTINE CKUMS (T, ICKWRK, RCKWRK, UMS)
Returns the internal energies in mass units; see Eq. (30).

INPUT
T - Temperature

cgs units - kelvins
Data type - real scalar

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
UMS - Internal energies in mass units for the species.

cgs units - ergs/gm
Data type - real array
Dimension UMS(*) at least KK, the total number of species.

CKWC CKWC CKWC CKWC CKWC CKWC CKWC
**********************************************

*****.*-******************
x*****

SUBROUTINE CKWC (T, C, ICKWRK. RCKWRK, WDOT)
Returns the molar production rates of the species given the
temperature and molar concentrations; see Eq. (49).

INPUT
T - Temperature

cgs units - kelvins
Data type - real scalar

C - Molar concentrations of the species
cgs units - mole/cm**3
Data type - real array
Dimension C(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
WDOT - Chemical molar production rates of the species.

cgs units - moles/(cm**3*sec)
Data type - real array
Dimension WDOT(*) at least KK, the total number of species.



*********~******************.*****************

**************************
******

CKWL CKWL CKWL CKWL CKWL CKWL CKWL

SUBROUTINE CKWL (ICKWRK, RCKWRK, WL)
Returns a set of flags providing information on the wave length
of photon radiation.

INPUT
ICKWRK - Array of integer workspace

Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
WL - Radiation wavelengths for the reactions.

WL(I)= O. reaction I does not have radiation as
either a reactant or product

WL(I)=-A reaction I has radiation of wavelength A
as a reactant

WL(I)=+A reaction I has radiation of wavelength A
as a product

If A = 1.0 then no wavelength information was given;
cgs units - angstroms
Data type - real array
Dimension WL(~) at least II, the total number of reactions.

CKWT CKWT CKWT CKWT CKWT CKWT CKWT
******************~***************************

***********************-**

******

SUBROUTINE CKWT (ICKWRK, RCKWRK, WT)
Returns the molecular weights of the species.

INPUT
ICKWRK - Array of integer workspace

Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
WT - Molecular weights of the species.

cgs units - gm/mole
Data type - real array
Dimension WT(~) at least KK, the 'total number of species.
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*****.****************************************
***********************-***

******

CKWXP CKWXP CKWXP CKWXP CKWXP CKWXP CKWXP

T

x

INPUT
P

SUBROUTINE CKWXP (P, T, X, ICKWRK, RCKWRK, WOOT)
Returns the molar production rates of the species given the
pressure, temperature and mole fractions; see Eq. (49).

- Pressure.
cgs units - dynes/cm**2
Data type - real scalar

- Temperature
cgs units - kelvins
Data type - real scalar

- Mole fractions of the species
cgs units - none
Data type - real array
Dimension X(*) at least KK. the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
WDOT - Chemical molar production rates of the species.

cgs units - moles/(cm**3*sec)
Data type - real array
Dimension WDOT(*) at least KK, the total number of species.

CKWXR CKWXR CKWXR CKWXR CKWXR CKWXR CKWXR

T

x

INPUT
RHO

**********************************************
**************************

******

SUBROUTINE CKWXR (RHO, T, X, ICKWRK, RCKWRK, WDOT)
Returns the molar production rates of the species given the
mass density, temperature and mole fractions; see Eq. (49).

- Mass density
cgs units - gm/cm**3
Data type - real scalar

- Temperature
cgs units - kelvins
Data type - real scalar

- Mole fractions of the species
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
WDOT - Chemical molar production rates of the species.

cgs units - moles/(cm**3*sec)
Data type - real array
Dimension WDOT(*) at least KK, the total number of species.
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CKWYP CKWYP CKWYP CKWYP CKWYP CKWYP CKWYP

y

T

INPUT
P

*********.***********~***.*****.**************

~*************************

******

SUBROUTINE CKWYP (P, T, Y, ICKWRK, RCKWRK, WDOT)
Returns the molar production rates of the species given the
pressure, temperature and mass fractions; see Eq. (49).

- Pressure.
cgs units - dynes/cm**2
Data type - real scalar

- Temperature
cgs units - kelvins
Data type - real scalar

- Mass fractions of the species
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - lnteger array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
WDOT - Chemical molar production rates of the species.

cgs units - moles/(cm**3*sec)
Data type - real array
Dimension WDOT(*) at least KK, the total number of species.

CKWYR CKWYR CKWYR CKWYR CKWYR CKWYR CKWYR

Y

T

INPUT
RHO

****-****************************.************
**************************

****:l!C*

SUBROUTINE CKWYR (RHO, T, Y, ICKWRK, RCKWRK, WDOT)
Returns the molar production rates of the species given the
mass density, temperature and mass fractions; see Eq. (49).

- Mass density
cgs units - gm/cm**3
Data type - real scalar

- Temperature
cgs units - kelvins
Data type - real scalar

- Mass fractions of the species
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
WDOT - Chemical molar production rates of the species.

cgs units - moles/(cm**3*sec)
Data type - real array
Dimension WDOT(*) at least KK, the total number of species.
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CKXNUM CKXNUM CKXNUM CKXNUM CKXNUM CKXNUM CKXNUM
**********************************************

**************************
******

to write

" 0.170E+14 0 47780.0"
3, the number of values requested
6, a logical unit number on which
diagnostic messages
3, the number of values found
1.700E+13, O.OOOE+OO, 4.778E+04
.FALSE.

output: NVAL
RVAL(~)

KERR

SUBROUTINE CKXNUM (LINE, NEXP, LOUT, NVAL, RVAL, KERR)
This subroutine is called to parse a character string, LINE, that is
composed of several blank-delimited substrings. Each substring is expected
to represent a number, which is converted to entries in the array of real
numbers, RVAL(~). NEXP is the number of values expected, and NVAL is the
number of values found. This allows format-free input of numerical data.
For example:
input: LINE

NEXP
LOUT

INPUT
LINE

NEXP

LOUT

OUTPUT
NVAL

RVAL

KERR

- A character string
Data type - CHARACTER*80

Number of real values to be found in character string
Data type - integer scalar

- Output unit for error messages.
Data type - integer scalar

- Number of real values found in character string.
Data type - integer scalar

- Array of real values found
Data type - real array

Error flag; KERR=.TRUE. if there is a syntax of dimensioning
error.

Data type - logical.

**********************************************
**************************

******

CKXTCP CKXTCP CKXTCP CKXTCP CKXTCP CKXTCP CKXTCP

SUBROUTINE CKXTCP (P, T, X, ICKWRK, RCKWRK, C)
Returns the molar concentrations given the pressure,
temperature and mole fractions; see Eq. (10).

INPUT
P - Pressure.

cgs units - dynes/cm**2
Data type - real scalar

T - Temperature
cgs units - kelvins
Data type - real scalar

X - Mole fractions of the species
cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
C - Molar concentrations of the species

cgs units - mole/cm**3
Data type - real array
Dimension C(*) at least KK, the total number of species.
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CKXTCR CKXTCR CKXTCR CKXTCR CKXTCR CKXTCR CKXTCR

X

T

INPUT
RHO

******.****x*********************************~

*************************~

****.*

SUBROUTINE CKXTCR (RHO, T, X, ICKWRK, RCKWRK, C)
Returns the molar concentrations given the mass density,
temperature and mole fractions; see Eq. (11).

- Mass density
cgs units - gm/cm~*3

Data type real scalar
- Temperature

cgs units - kelvins
Data type - real scalar

- Mole fractions of the species
cgs units - none
Data type - real array
Dimension X(~) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(~) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(~) at least LENRWK.

OUTPUT
C - Molar concentrations of the species

cgs units - mole/cm~*3

Data type - real array
Dimension C(*) at least KK, the total number of species.

CKXTY CKXTY CKXTY CKXTY CKXTY CKXTY CKXTY
**********************************************

**************************

******
SUBROUTINE CKXTY (X, ICKWRK, RCKWRK, Y)

Returns the mass fractions given the mole fractions; see Eq. (9).

INPUT
X - Mole fractions of the species

cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

DUTPUT
Y - Mass fractions of the species

cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

1~



CKYTCP CKYTCP CKYTCP CKYTCP CKYTCP CKYTCP CKYTCP

Y

T

INPUT
P

**********************************************
**************************

******

SUBROUTI NE CKYTCP (p, T, Y, I CKWRK, RCKWRK, C)
Returns the molar concentrations given the pressure,
temperature and mass fractions; see Eq. (7).

- Pressure.
cgs units - dynes/cm**2
Data type - real scalar

- Temperature
cgs units - kelvins
Data type - real scalar

- Mass fractions of the species
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
C Molar concentrations of the species

cgs units - mole/cm**3
Data type - real array
Dimension C(*) at least KK, the total number of species.

CKYTCR CKYTCR CKYTCR CKYTCR CKYTCR CKYTCR CKYTCR

Y

T

INPUT
RHO

**********************************************
*****.********************

******

SUBROUTINE CKYTCR (RHO,T, Y, ICKWRK, RCKWRK, C)
Returns the molar concentrations given the mass density,
temperature and mass fractions; see Eq. (8).

- Mass density
cgs units - gm/cm**3
Data type - real scalar

- Temperature
cgs units - kelvins
Data type - real scalar

- Mass fractions of the species
cgs units - none
Data type - real array
Dimension Y(*) at least KK, the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
C Molar concentrations of the species

cgs units - mole/cm**3
Data type - real array
Dimension C(*) at least KK, the total number of species.
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CKYTX CKYTX CKYTX CKYTX CKYTX CKYTX CKYTX
*~********************************************

*****~********************

******

SUBROUTINE CKYTX (Y, ICKWRK. RCKWRK, X)
Returns the mole fractions given the mass fractions; see Eq. (6).

INPUT
Y - Mass fractions of the species

cgs units - none
Data type - real array
Dimension Y(*) at least KK. the total number of species.

ICKWRK - Array of integer workspace
Data type - integer array
Dimension ICKWRK(*) at least LENIWK.

RCKWRK - Array of real work space.
Data type - real array
Dimension RCKWRK(*) at least LENRWK.

OUTPUT
X - Mole fractions of the species

cgs units - none
Data type - real array
Dimension X(*) at least KK, the total number of species.
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k = 1, ... ,K,

VII. SAMPLE PROBLEM

Before applying CHEMKIN, the user must (1) define a system of governing equations,
(2) define a reaction mechanism, and (3) choose a solution method. In this sample
problem we will solve the equations describing constant pressure combustion for a
hydrogen-air reaction mechanism. The governing energy and mass conservation equations
are

dT 1 K
........ = -~~-.::- I: hkWkWK,
dt pCp k=l

dYk WkWk

dt P

where T is temperature and Yk are the mass fractions of the K species involved. The
independent variable t is time. Other variables are p, mass density; cp , mean specific heat
at constant pressure; hk, the specific enthalpies of the species; Wk, the molar production
rates of the species; and Wk, the molecular weights of the species.

The governing system of ordinary differential equations and accompanying initial
conditions form an initial value problem. The equations will be solved using the code
LSODEll written by Alan Hindmarsh. We find this code to be highly reliable for the
solution of wide range of stiff initial-value problems.

The Fortran code for solution of the sample problem is given in Section 4 below.
After initializing Chemkin, the code reads the initial nonzero moles from input. It then
repeatedly calls subroutine LSODE to obtain the solution at uniform print intervals.
The governing equation formulation is found in SUBROUTINE FUN, which is called by
LSODE.

The sections below present a VAX command procedure for the sample problem,
Chemkin Interpreter input and output, and the input, Fortran code, and output for the
sample problem. The last section describes how to use LSODE.
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1. VAX Command Procedure

VAXNMS Commands Meaning

$assign MECHANISM.DAT

$assign INTERP.OUT

$assign THERMO.DAT

$assign L1NK.BIN

FOR015

FOR016

FOR017

FOR025

Assign the user's reaction mechanism to Fortran
unit 15. This is the input file for the Chemkin
Interpreter.

Assign the output file for printed output from the
Chemkin Interpreter. The Interpreter writes to unit 16.

Assign the Thermodynamic Database to Fortran
unit 17.

Assign the Linking file to Fortran unit 25.

$run

$for

INTERP.EXE

SAMPLE.FOR

Execute the Interpreter.

Compile the user's Fortran program.

$assign SAMPLE.lNP

$assign SAMPLE.OUT

FOR005

FOR006

Assign a file containing any input required by the
user's program to Fortran unit 5.

Assign a file to accept any printed output from the
user's program to Fortran unit 6.

$Iink

$run

SAMPLE.OBJ, LSDOE CKLIB/LiB

SAMPLE

Link the user's program with the Chemkin Gas-Phase
Subroutine Library LSODE.

Execute the user's program.
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2. Input to Interpreter

ELEMENTS H 0 N END

SPECIES H2 H 02 0 OH H02 H202 H20 N N2 NO END

REACTIONS

H2+02=20H 0.170E + 14 0.00 47780

OH + H2=H20+H 0.117E+10 1.30 3626 ! D-L&W

0+OH=02+H OAOOE + 15 -0.50 0 ! JAM 1986

0+ H2=OH+H 0.506E+05 2.67 6290 KLEMM ET AL., 1986

H+02+M=H02+M 0.361 E+ 18 -0.72 0 ! DIXON-LEWIS

H20/18.6/ H2/2.86/ N2/1.26/

OH + H02=H20+ 02 0.750E + 13 0.00 0 D-L

H+H02=20H 0.140E + 15 0.00 1073 D-L

0+H02=02+0H 0.140E + 14 0.00 1073 D-L

20H=0+H20 0.600E+09 1.30 0 COHEN-WEST

H+H+M=H2+M 0.100E+ 19 -1.00 0 D-L

H20/0.0/ H2/0.0/

H+ H+ H2= H2+ H2 0.920E+17 -0.60 0

H + H + H20 = H2 + H2O 0.600E+20 -1.25 0

H + OH + M = H20 + M 0.160E +23 -2.00 0 D-L

H20/5/

H+O+M=OH+M 0.620E+17 -0.60 0 D-L

H20/5/

0+0+M=02+M 0.189E + 14 0.00 -1788 NBS

H + H02=H2+02 0.125E+14 0.00 0 D-L

H02 + H02 = H202 + 02 0.200E + 13 0.00 0

H202+ M=OH+OH+M 0.130E + 18 0.00 45500

H202 + H = H02 + H2 0.160E+13 0.00 3800

H202 + OH = H20 + H02 0.100E + 14 0.00 1800

0+N2=NO+ N 0.140E + 15 0.00 75800

N+02=NO+0 0.640E+10 1.00 6280

OH+N=NO+H 0.400E+ 14 0.00 0

END

109



3. Output from Interpreter

CHEMKIN INTERPRETER OUTPUT: CHEMKIN-II Version 1.3, May 1989
DOUBLE PRECISION

ELEMENTS
CONSIDERED

ATOMIC
WEIGHT

1. H 1.00797
2. 0 15.9994
3. N 14.0067

-------------------------------------------------------------------------------
C

P H
H A
A R

SPECIES S G MOLECULAR TEMPERATURE ELEMENT COUNT
CONSIDERED E E WEIGHT LOW HIGH H 0 N
-------------------------------------------------------------------------------

1 . H2 G 0 2.01594 300.0 5000.0 2 0 0
2. H G 0 1.00797 300.0 5000.0 1 0 0
3. 02 G 0 31.99880 300.0 5000.0 0 2 0
4. 0 G '0 15.99940 300.0 5000.0 0 1 0
5. OH G 0 17.00737 300.0 5000.0 1 1 0
6. H02 G 0 33.00677 300.0 5000.0 1 2 0
7. H202 G 0 34.01474 300.0 5000.0 2 2 0
8. H2O G 0 18.01534 300.0 5000.0 2 1 0
9. N G 0 14.00670 300.0 5000.0 0 0 1

10. N2 G 0 28.01340 300.0 5000.0 0 0 2
11. NO G 0 30.00610 300.0 5000.0 0 1 1

-------------------------------------------------------------------------------

REACTIONS CONSIDERED PRE EXP TEMP EXP ACT ENG

1 . H2+02=20H 0.170E+14 0.000 47780.000
2. OH+H2=H20+H 0.117E+10 1.300 3626.000
3. 0+OH=02+H 0.400E+15 -0.500 0.000
4. 0+H2=OH+H 0.506E+05 2.670 6290.000
5. H+02+M=H02+M 0.361E+18 -0.720 0.000

H2O Enhanced by 1.860E+Ol
H2 Enhanced by 2.860E+00
N2 Enhanced by 1.260E+00

6. OH+H02=H20+02 0.750E+13 0.000 0.000
7. H+H02=20H 0.140E+15 0.000 1073.000
8. 0+H02=02+0H 0.140E+14 0.000 1073.000
9. 20H=0+H20 0.600E+09 1.300 0.000

10. H+H+M=H2+M 0.100E+19 -1.000 0.000
H2O Enhanced by O.OOOE+OO
H2 Enhanced by O.OOOE+OO

11. H+H+H2=H2+H2 0.920E+17 -0.600 0.000
12. H+H+H20=H2+H20 0.600E+20 -1.250 0.000
13. H+OH+M=H20+M 0.160E+23 -2.000 0.000

H2O Enhanced by 5.000E+00
14. H+O+M=OH+M 0.620E+17 -0.600 0.000

H2O Enhanced by 5.000E+00
15. 0+0+M=02+M 0.189E+14 0.000 -1788.000
16. H+H02=H2+02 0.125E+14 0.000 0.000
17. H02+H02=H202+02 0.200E+13 0.000 0.000
18. H202+M=OH+OH+M 0.130E+18 0.000 45500.000
19. H202+H=H02+H2 0.160E+13 0.000 3800.000
20. H202+0H=H20+H02 0.100E+14 0.000 1800.000
21, 0+N2=NO+N 0.140E+15 0.000 75800.000
22. N+02=NO+0 0.640E+l0 1.000 6280.000
23. OH+N=NO+H 0.400E+14 0.000 0.000

NOTE: A units mole-cm-sec-K, E units cal/mole

NO ERRORS FOUND ON INPUT ... CHEMKIN LINKING FILE WRITTEN.

WORKING SPACE REQUIREMENTS ARE
INTEGER: 461
REAL: 469
CHARACTER: 14
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4. User's Fortran Code

PROGRAM CONP
C
C Integration of adiabatic, constant pressure kinetics problems
C
C*****double precision

IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER(I-N)
C*****END double precision
C*****single precision ,
C IMPLICIT REAL (A-H,O-Z), INTEGER (I-N)
C*****END single precision
C

C

C

PARAMETER (LENIWK=4000, LENRWK=4000, LENCWK=500, NK=5, NLMAX=55,
I LRW=lOOO, LIW=lOO, LIN=5, LOUT=6, LINCK=25, KMAX=50)

DIMENSION X(KMAX), Z(KMAX), ELWRK(LRW), IELWRK(LIW), VAL(lO)

COMMON /pARAM/ ICKWRK(4000), RCKWRK(4000), KK, P, RU, WT(50),
I WDOT(50), H(50)

CHARACTER CCKWRK(LENCWK)*16, KSYM(KMAX)*16, LINE*80
LOGICAL KERR, IERR
DATA KERR/.FALSE';, X/KMAX*O.O/, KSYM/KMAX*' '/
EXTERNAL FUN

C
C Open the Chemkin LINK file
C

OPEN(UNIT=LINCK, STATUS='OLD', FORM='UNFORMATIED')
C
C Initialize Chemkin
C

C

C

CALL CKINIT (LENIWK, LENRWK, LENCWK, LINCK, LOUT, ICKWRK,
I RCKWRK, CCKWRK)

CALL CKINDX (ICKWRK, RCKWRK, MM, KK, II, NFIT)

IF (KK .GT. KMAX) THEN
WRITE(LOUT, *) 'Species dimension too smalL.must be at least ',KK
STOP
ENDIF

CALL CKSYMS(CCKWRK, LOUT, KSYM, IERR)
IF (IERR) KERR = .TRUE.
CALL CKWT(ICKWRK, RCKWRK, WT)
CALL CKRP(ICKWRK, RCKWRK, RU, RUC, PATM)

C
C Pressure and temperature
C

WRITE(LOUT, '(fA)') , ADIABATIC FIXED PRESSURE PROBLEM'
WRITE(LOUT, '(lA)') , INPUT PRESSURE(ATM) AND TEMPERATURE(K)'
READ (LIN, *) PA, T
WRITE(LOUT,7105) PA, T
P = PA*PATM
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C
C Initial nonzero moles
C

1

C

C

C

40 CONTINUE
LINE ="
WRITE(LOUT, '(lA)') , INPUT MOLES OF NEXT SPECIES'
READ(LIN, '(A)', END=45) LINE
WRITE(LOUT, '(X,A)') LINE
ILEN = INDEX(LINE, '1')
IF (ILEN .EQ. 1) GO TO 40

IF (ILEN .NE. 1) THEN
ILEN = ILEN - 1
IF (ILEN .LE. 0) ILEN = LEN(LINE)
IF (INDEX(LINE(:ILEN), 'END') .EQ. 0) THEN

IF (LINE(:ILEN) .NE. ") THEN
CALL (CKSNUM(LINE(:ILEN), 1, LOUT, KSYM, KK, KNUM,

NVAL, VAL, IERR)
IF (IERR) THEN

WRITE(LOUT,*) , Error reading moles.. .'
KERR = .TRUE.

ELSE
X(KNUM) = VAL(l)

ENDIF
ENDIF
GO TO 40

ENDIF
ENDIF

45 CONTINUE
C
C Final time and print interval
C

C

WRITE(LOUT, '(lA)') , INPUT FINAL TIME AND DT'
READ (LIN, *) T2, DT
WRITE(LOUT,7105) T2, DT

IF (KERR) STOP
C
C Normalize the mole fractions
C

XTOT=O.OO
DO 50 K=I,KK

XTOT= XTOT +X(K)
50 CONTINUE

D055K=I,KK
X(K) = X(K) I XTOT

55 CONTINUE
C
C Initial conditions and mass fractions
C

TTl =0.0
Z(I) =T
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CALL CKXTY (X, ICKWRK, RCKWRK, Z(2))
C
C Integration control parameters for LSODE
C

TT2 =TTI
NEQ =KK+ I
MF =22
ITOL = I
IOPT =0
RTOL = I.OE-6
ITASK = I
ATOL = tOE-15
ISTATE: I
NLINES=NLMAX + I

C
C Integration loop
C

250 CONTINUE
IF (NLINES .GE. NLMAX) THEN

C
C Print page heading
C

WRITE(LOUT, 7003)
WRITE(LOUT, 7100) (KSYM(K)(:lO), K=I,MIN(NK,KK))
NUNES = I

C
DO 200 KI = NK+I, KK, NK

WRITE(LOUT, 7110) (KSYM(K)(:lO),K=KI, MIN(KI+NK-I, KK))
NLINES = NLINES + I

200 CONTINUE
ENDIF

C
C Print the solution
C

C

C

T =Z(l)
CALL CKYTX (Z(2), ICKWRK, RCKWRK, X)

WRITE(LOUT, 7105) TTl, T, (X(K), K=I,MIN(NK,KK))
NLINES = NUNES + I

•

DO 300 KI = NK+I, KK, NK
WRITE(LOUT, 7115) (X(K), K=KI, MIN(KI+NK-I,KK))
NUNES = NLINES + I

300 CONTINUE
C

IF (TT2 .GE. T2) STOP
TT2 = MIN(TT2 + DT, T2)

C
C Call the differential equation solver
C

350 CONTINUE
CALL LSODE (FUN, NEQ, Z, TTl, TT2, ITOL, RTOL, ATOL, ITASK,ISTATE, IOPT,

I ELWRK, LRW, IELWRK, LIW, lAC, MF)
C
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IF (ISTATE .LE. -2) THEN
IF (ISTATE .EQ. -1) THEN

ISTATE=2
GO TO 350

ELSE
WRITE(LOUT,*) 'ISTATE=',ISTATE
STOP

ENDIF
ENDIF
GO TO 250

C
C FORMATS
C

7003 FORMAT (lH1)
7100 FORMAT (2X, 'T(SEC)', 6X, 'TMP(K)', 6X, 5(lX,A10»
7105 FORMAT (l2E11.3)
7110 FORMAT (26X, 5(lX,AlO»)
7115 FORMAT (22X, lOE11.3)

END
C

114

•



SUBROUTINE FUN (N, TIME, Z, ZP)
C
C*****double precision

IMPLICIT DOUBLE PRECISION(A-H,O-Z), INTEGER(I-N)
C*****END double precision
C*****single precision
C IMPLICIT REAL (A-H,O-Z), INTEGER(I-N)
C*****END single precision
C

DIMENSION ZeN), ZP(N)
COMMON /PARAM/ ICKWRK(4000), RCKWRK(4000), KK, P, RU, WT(50),

1 WDOT~~,H~~

C
C Variables in Z are: Z(I) = T
C Z(K+1) = Y(K)
C
C Call Chemkin subroutines
C

CALL CKRHOY (P, Z(1), Z(2), ICKWRK, RCKWRK, RHO)
CALL CKCPBS (Z(I), Z(2), ICKWRK, RCKWRK, CPB)
CALL CKWYP (P, Z(I), Z(2), ICKWRK, RCKWRK, WDOT)
CALL CKHMS (Z(I), ICKWRK, RCKWRK, H)

C
C Form governing equation
C

SUM =0.0
DO 100 K=I,KK

ZP(K+1) = WDOT(K) * WT(K) / RHO
SUM = SUM + H(K) * WDOT(K) * WT(K)

100 CONTINUE
ZP(1) = -SUM / (RHO*CPB)

C
RETURN
END
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5. Input to Fortran Code

1 1000
H2 1

02 3
N2 .1

END
3.0E-4 3.0E-5

6. Output from Fortran Code

CKLIB: Chemical Kinetics Library
CHEMKIN-II Version 1.6, June 1989
DOUBLE PRECISION

ADIABATIC FIXED PRESSURE PROBLEM

INPUT PRESSURE(ATM) AND TEMPERATURE(K)
0.100E+01 0.100E+04

INPUT MOLES OF NEXT SPECIES
H2 1

INPUT MOLES OF NEXT SPECIES
02 3

INPUT MOLES OF NEXT SPECIES
N2 .1

INPUT MOLES OF NEXT SPECIES
END

INPUT FINAL TIME AND DT
0.300E-03 0.300E-04

T(SEC) TMP(K) H2 H 02 0 OH
H02 H202 H2O N N2
NO

O.OOOE+OO 0.100E+04 0.244E+00 O.OOOE+OO 0.732E+00 O.OOOE+OO O.OOOE+OO
O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO 0.244E-01
O.OOOE+OO

0.300E-04 0.100E+04 0.244E+00 0.814E-05 0.732E+00 0.424E-05 0.144E-05
0.129E-04 0.103E-07 0.258E-04 0.180E-20 0.244E-01
0.372E-19

0.600E-04 0.196E+04 0.891E-02 0.169E-01 0.625E+OO 0.571E-01 0.411E-01
0.175E-03 O.357E-04 0.224E+00 0.228E-09 0.262E-01
0.165E-07

0.900E-04 O.235E+04 0.367E-02 0.332E-02 0.657E+00 0.235E-01 0.392E-01
0.846E-04 0.445E-05 0.246E+00 0.192E-08 0.271E-01
0.163E-05

O. 120E -03 0.243E+04 0.258E-02 0.185E-02 O.665E+00 0.165E-01 0.352E-01
0.693E-04 0.254E-05 0.251E+00 O.229E-08 0.272E-01
0.437E-05

0.150E-03 0.246E+04 0.216E-02 0.139E-02 0.669E+00 0.138E-01 0.330E-01
0.641E-04 0.197E-05 0.254E+00 0.235E-08 0.273E-01
O. 729E -05

O. 180E -03 0.248E+04 0.197E-02 0.120E-02 0.670E+OO O.125E-01 O.319E-01
O.619E-04 0.173E-05 0.255E+00 0.237E-08 0.273E-01
O. 102E -04

0.210E-03 0.248E+04 0.188E-02 0.111E-02 0.671E+00 0.119E-01 0.313E-01
0.609E-04 0.162E-05 0.255E+00 0.238E-08 0.273E-01
0.131E-04

0.240E-03 0.249E+04 0.183E-02 0.106E-02 0.671E+00 0.116E-01 0.31OE-01
0.604E-04 0.157E-05 0.256E+00 0.239E-08 0.273E-01
0.159E-04

0.270E-03 0.249E+04 0.181E-02 0.104E-02 0.672E+00 0.115E-01 0.308E-01
0.602E-04 0.154E-05 0.256E+00 O.240E-08 0.273E-01
0.188E-04

0.300E-03 0.249E+04 0.179E-02 0.103E-02 0.672E+00 O.114E-01 0.307E-01
0.600E-04 O.152E-05 0.256E+00 0.241E-08 0.273E-01
0.217E-04
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7. LSODE Summary

first provide a subroutine of the form ..
subroutine f (neq, t, y, ydot)
dimension y(neq), ydot(neq)

which supplies the vector function f by loading ydot(i) with f(i).

communication between the user and the Isode package, for normal
situations, is summarized here. this summary describes only a subset
of the full set of options available. see the full description for
details, including optional communication, nonstandard options,
and instructions for special situations. see also the example
problem (with program and output) following this summary.

b. next determine (or guess) whether or not the problem is stiff.
stiffness occurs when the jacobian matrix df/dy has an eigenvalue
whose real part is negative and large in magnitude, compared to the
reciprocal of the t span of interest. if the problem is nonstiff,
use a method flag mf = 10. if it is stiff, there are four standard
choices for mf, and Isode requires the jacobian matrix in some form.
this matrix is regarded either as full (mf = 21 or 22),or banded
(mf = 24 or 25). in the banded case, Isode requires two half-bandwidth

subroutine Isode (f, neq, y, t, tout, itol, rtol, atol, itask,
1 istate, iopt, rwork, lrw, iwork, liw, jac, mt)

external f, jac
integer neq, itol, itask, istate, iopt, lrw, iwork, liw, mf
double precision y, t, tout, rtol, atol, rwork
dimension neq(l), y(I), rtol(l), atol(l), rwork(lrw), iwork(liw)

c---------------------------------------------------------------------------
c this is the march 30, 1987 version of
c Isode.. livermore solver for ordinary differential equations.
c this version is in double precision.
c
c Isode solves the initial value problem for stiff or nonstiff
c systems of first order ode-s,
c dy/dt = f(t,y), or, in component form,
c dy(i)/dt = f(i) = f(i,t,y(l),y(2), ... ,y(neq)) (i = 1,... ,neq).
c Isode is a package based on the gear and gearb packages, and on the
c october 23, 1978 version of the tentative odepack user interface
c standard, with minor modifications.
c---------------------------------------------------------------------------
c reference ..
c alan c. hindmarsh, odepack, a systematized collection of ode
c solvers, in scientific computing, r. s. stepleman et al. (eds.),
c north-holland, amsterdam, 1983, pp. 55-64.
c---------------------------------------------------------------------------
c author and contact alan c. hindmarsh,
c computing and mathematics research div., 1-316
c lawrence livermore national laboratory
c livermore, ca 94550.
c---------------------------------------------------------------------------
c summary of usage.
c
c
c
c
c
c
c
c
c a.
c
c
c
c
c
c
c
c
c
c
c
c
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parameters ml and mu. these are, respectively, the widths of the lower
and upper parts of the band, excluding the main diagonal. thus the
band consists of the locations O,j) with i-ml .Ie. j .Ie. i+mu, and the full
bandwidth is ml+mu+ 1.

c. if the problem is stiff, you are encouraged to supply the jacobian
directly (mf = 21 or 24), but if this is not feasible, Isode will
compute it internally by difference quotients (mf = 22 or 25).
if you are supplying the jacobian, provide a subroutine of the form..

subroutine jac (neq, t, y, mI, mu, pd, nrowpd)
dimension y(neq), pd(nrowpd,neq)

which supplies df/dy by loading pd as follows ..
for a full jacobian (mf = 21), load pd(i,j) with df(i)/dy(j),

the partial derivative of f(i) with respect to y(j). (ignore the
mI and mu arguments in this case.)

for a banded jacobian (mf = 24), load pd(i-j+mu+ l,j) with
df(i)/dyU), i.e. load the diagonal lines of df/dy into the rows of
pd from the top down.

in either case, only nonzero elements need be loaded.

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c d. write a main program which calls subroutine Isode once for
c each point at which answers are desired. this should also provide
c for possible use of logical unit 6 for output of error messages
c by Isode. on the first call to Isode, supply arguments as follows ..
c f = name of subroutine for right-hand side vector f.
c this name must be declared external in calling program.
c neq = number of first order ode-so
c y = array of initial values, of length neq.
c t = the initial value of the independent variable.
c tout = first point where output is desired (.ne. t).
c itol = 1 or 2 according as atol (below) is a scalar or array.
c rtol = relative tolerance parameter (scalar).
c atol = absolute tolerance parameter (scalar or array).
c the estimated local error in yO) will be controlled so as
c to be roughly less (in magnitude) than
c ewt(i) = rtol*abs(y(i» + atol if itol = 1, or
c ewt(i) = rtol*abs(y(i» + atol(i) if itol = 2.
c thus the local error test passes if, in each component,
c either the absolute error is less than atol (or atoI(i»,
c or the relative error is less than rtol.
c use rtol = 0.0 for pure absolute error control, and
c use atol = 0.0 (or atol(i) = 0.0) for pure relative error
c control. caution.. actual (global) errors may exceed these
c local tolerances, so choose them conservatively.
c itask = 1 for normal computation of output values of y at t = tout.
c istate = integer flag (input and output). set istate = 1.
c iopt = 0 to indicate no optional inputs used.
c rwork = real work array of length at least..
c 20 + I6*neq for mf = 10,
c 22 + 9*neq + neq**2 for mf = 21 or 22,
c 22 + lO*neq + (2*ml + mu)*neq for mf = 24 or 25.
c Irw = declared length of rwork (in user-s dimension).
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from the first call (or any call) is ..
array of computed values of yet) vector.
corresponding value of independent variable (normally tout).
2 if lsode was successful, negative otherwise.
-1 means excess work done on this call (perhaps wrong mf).
-2 means excess accuracy requested (tolerances too small).
-3 means illegal input detected (see printed message).
-4 means repeated error test failures (check all inputs).
-5 means repeated convergence failures (perhaps bad jacobian

supplied or wrong choice of mf or tolerances).
-6 means error weight became zero during problem. (solution

component i vanished, and atol or atol(i) = 0.)

=

= integer work array of length at least..
20 for mf = 10,
20 + neq for mf = 21, 22, 24, or 25.

if mf = 24 or 25, input in iwork(l),iwork(2) the lower
and upper half-bandwidths ml,mu.

= declared length of iwork (in user-s dimension).
= name of subroutine for jacobian matrix (mf = 21 or 24).

if used, this name must be declared external in calling
program. if not used, pass a dummy name.

= method flag. standard values are..
10 for nonstiff (adams) method, no jacobian used.
21 for stiff (bdf) method, user-supplied full jacobian.
22 for stiff method, internally generated full jacobian.
24 for stiff method, user-supplied banded jacobian.
25 for stiff method, internally generated banded jacobian.

note that the main program must declare arrays y, rwork, iwork,
and possibly atol.

e. the output
y =
t =

c iwork
c
c
c
c
c liw
c jac
c
c
c mf
c
c
c
c
c
c
c
c
c
c
c
c istate
c
c
c
c
c
c
c
c
c
c f. to continue the integration after a successful return, simply
c reset tout and call Isode again. no other parameters need be reset.
c
c-----------------------------------------------------------------------------------------

•
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APPENDIX A. STORAGE ALLOCATION FOR THE WORK ARRAYS

Preceding page blank
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The work arrays contain all the pertinent information about the species and the
reaction mechanism. They also contain some work space needed by various routines
for internal manipulations. If a user wishes to modify a CKLIB subroutine or to
write new routines, he will probably want to use the work arrays directly. The
starting addresses for information stored in the work arrays are found in the
labeled common block, COMMON /CKSTRT/, and are explained below.

COMMON /CKSTRT/
1
2
3
4
5
6
7

INDEX CDNSTANTS.

NMM
NCP2,
NTHB,
IcNT,
IcWL,
NcWT,
NcKT.
NcK4,

NKK , NI I ,
NCP2T.NPAR,
NRLT, NWL,
IcNU. IcNK.
IcFL. IcFD,
NcTT. NcAA,
NcWL, NcRU,
NcI1. NcI2,

MXSP,
NLAR,
IcMM,
IcNS,
IcKF,
NcCD,
NcRC.
NcI3,

MXTB,
NFAR,
IcKK,
IcNR,
IcTB,
NcRV,
NcPA.
NcI4

MXTP,
NLAN,
IcNC,
IcLT,
IcKN,
NcLT,
NcK1,

NCP
NFAL,
IcPH,
IcRL,
IcKT,
NcRL,
NcK2,

NCP1,
NREV,
IcCH,
IcRV,
NcAW.
NcFL.
NcK3.

..

NMM
NKK
NIl
MXSP

MXTB

MXTP

NCP

NCP1
NCP2
NCP2T

NPAR

NLAR

NFAR
NLAN
NFAL
NREV
NTHB
NRLT
NWL

- Total number of elements in problem.
- Total number of species in problem.
- Total number of reactions in problem.
- Maximum number of species (reactants plus products) allowed

for any reaction, unless changed in the interpreter, MXSP~6.

- Maximum number of enhanced third-bodies allowed for any
reaction; unless changed in the interpreter, MXTB~10.

- Maximum number of temperatures allowed in fits of
thermodynamic properties for any species; unless changed in
the interpreter and the thermodynamic database, MXTP~3.

- Number of polynomial coefficients to fits of CP!R for a
species; unless changed in the interpreter and the
thermodynamic database, NCP~5.

- NCP + 1
- NCP + 2
- Total number of thermodynamic fit coefficients for the

species; unless changed, NCP2T ~ (MXTP-1)*NCP2 ~ 14.
- Number of parameters required in the rate expression

for the reactions; in the current formulation NPAR:3.
- Number of parameters required for Landau-Teller reactions;

NLAR:4.
- Number of parameters allowed for fall-off reactions; NFAR~8.

- Total number of Landau-Teller reactions.
- Total number of fall-off reactions.

Total number of reactions with reverse parameters.
- Total number of reactions with third-bodies.
- Total number of Landau-Teller reactions with reverse parameters.
- Total number of reactions with radiation wavelength

enhancement factors.

STARTING ADDRESSES FOR THE CHARACTER WORK SPACE. CCKWRK.

IcMM - Starting address of an array of the NMM element names.
CCKWRK(IcMM+M-1) is the name of the Mth element.

IcKK - Starting address of an array of the NKK species names.
CCKWRK(icKK+M-1) is the name of the Kth species.

STARTING ADDRESSES FOR THE INTEGER WORK SPACE. ICKWRK.

IcNC - Starting address of an array of the elemental content
of the NMM elements in the NKK species.
ICKWRK(IcNC+(K-1)*NMM+M-1) is the number of atoms of the
Mth element in the Kth species.

IcPH - Starting address of an array of phases of the NKK species.
ICKWRK(IcPH+K-1) -1, the Kth species is a sol id

0, the Kth species is a gas
+1, the Kth species is a 1iquid

IcCH - Starting address of an array of the electronic charges of
the NKK species.
ICKWRK(IcCH+K-1) ~ -2, the Kth species has two excess electrons.

IcNT - Starting address of an array of the number of temperatures
used to fit thermodynamic coefficients for the NKK species.
ICKWRK(IcNT+K-1) : N, N temperatures were used in the fit

for the Kth species.
IcNU - Starting address of a matrix of stoichiometric coefficients of

the MXSP species in the NIl reactions.
ICKWRK(IcNU+(I-1)*MXSP+N-1) is the coefficient of the Nth
participant species in the Ith reaction.

IcNK - Starting address of a matrix of species index numbers for
the MXSP species in the NIl reactions.
ICKWRK(IcNK+(I-1)*MXSP+N-1) : K, the species number of
the Nth participant species in the Ith reaction.
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IcNS - Starting address of an array of the total number of
participant specles for the NIl reactions, and the
reversibility of the reactions.
ICKWRK(IcNS+I-1) = +N, the Ith reaction is reversible

and has N participant species
(reactants + products)

-N, the Ith reaction is irreversible
and has N participant species
(reactants + products)

IcNR - Starting address of an array of the number of reactants
only for the NIl reactions.
ICKWRK(IcNR+I-1) is the total number of reactants in the
Ith reaction.

IcLT - Starting address of an array of the NLAN reaction numbers
for which Landau-Teller parameters have been given.
ICKWRK(IcLT+N-1) is the reaction number of the Nth
Landau-Teller reaction.

IcRL - Starting address of an array of the NRLT reaction numbers
for which reverse Landau-Teller parameters have been given.
ICKWRK(IcRL+N-1) is the reaction number of the Nth
reaction with reverse Landau-Teller parameters.

IcRV - Starting address of an array of the NREV reaction numbers
for which reverse Arhennius coefficients have been given.
ICKWRK(IcRV+N-1) is the reaction number of the Nth
reaction with reverse coefficients.

IcWL - Starting address of an array of the NWL reactions numbers for
which radiation wavelength has been given. ICKWRK(IcWL+N-1) is
the reaction number of the Nth reaction with wavelength
enhancement.

IcFL - Starting address of an array of the NFAL reaction numbers with
fall-off parameters. ICKWRK(IcFL+N-1) is the reaction number of
the Nth fall-off reaction.

IcFD - Starting address of an array describing the type of the NFAL
fall-off reactions. ICKWRK(IcFD+N-1) is the type of the N~h

fall-off reaction:
1 for 3-parameter Lindemann form
2 for 6- or a-parameter SRI form
3 for 6-parameter Troe form
4 for 7-parameter Troe form

IcKF Starting address of an array of the third-body species
numbers for the NFAL fall-off reactions.
ICKWRK(IcKF+N-1) = 0: the concentration of the third-body

is the total of the concentrations
of all species in the problem

= K: the concentration of the third-body
is the concentration of species K.

IcT8 - Starting address of an array of reaction numbers for the
NTH8 third-body reactions. ICKWRK(IcT8+N-1) is the reaction
number of the Nth third-body reaction.

IcKN - Starting address of an array of the number of enhanced
third bodies for the NTHB third-body reactions.
ICKWRK(IcKN+N-1) is the number of enhanced species for
the Nth third-body reaction.

IcKT - Starting address of an array of species numbers for the
MXTB enhanced 3rd bodies in the NTHB third-body reactions.
ICKWRK(IcTB+(N-1)*MXTB+L-1) is the species number of the
Lth enhanced species in the Nth third-body reaction.

STARTING ADDRESSES FOR THE REAL WORK SPACE, RCKWRK.

NcAW - Starting address of an array of atomic weights of the
NMM elements (gm/mo1e).
RCKWRK(NcAW+M-1) is the atomic weight of element M.

NcWT - Starting address of an array of molecular weights for
the NKK species (gm/mo1e).
RCKWRK(NcWT+K-1) is the molecular weight of species K.

NcTT - Starting address of an array of MXTP temperatures used in the
fits of thermodynamic properties of the NKK species (kelvins).
RCKWRK(NcTT+(K-1)*MXTP+N-1) is the Nth temperature for the
Kth species.

NcAA - Starting address of a three-dimensional array of coefficients
for the NCP2 fits to the thermodynamic properties for the NKK
species, for (MXTP-1) temperature ranges.
RCKWRK(NcAA+(L-1)*NCP2+(K-1)*NCP2T+N-1) = A(N,L,K);
A(N,L,K),N=1,NCP2T = polynomial coefficients in the fits
for the Kth species and the Lth temperature range, where
the total number of temperature ranges for the Kth species
is ICKWRK(IcNT+K-1) - 1.



space of length NIl

- Starting addresses of arrays of internal work space

space of length NKK

(kelvins),
(kelvins), and
(kelvins).

SRI:

- Starting address of an array of NPAR Arrhenius parameters for
the NIl reactions. RCKWRK(NcCO+(I-1)*NPAR+(L-1)) is the Lth
parameter of the Ith reaction, where

L=1 is the pre-exponential factor (mole-cm-sec-K),
L=2 is the temperature exponent, and
L=3 is the activation energy (kelvins).

- Starting address of an array of NPAR reverse Arrhenius
parameters for the NREV reactions. RCKWRK(NcRV+(N-1)*NPAR+(L-1))
is the Lth reverse parameter for the Nth reaction with reverse
parameters defined, where

L=1 is the pre-exponential factor (mole-cm-sec-K),
L=2 is the temperature exponent, and
L=3 is the activation energy (kelvins).

The reaction number is ICKWRK(IcRV+N-1).
- Starting location of an array of the NLAR parameters for

the NLAN Landau-Teller reactions. RCKWRK(NcLT+(N-1)*NLAR+(L-1))
is the Lth Landau-Teller parameter for the Nth Landau-Teller
reaction, where

L=1 is B(I) (Eq. 72) (kelvins**1/3), and
L=2 is C(I) (Eq. 72) (kelvins**2/3).

The reaction number is ICKWRK(IcLT+N-1).
- Starting location of an array of the NLAR reverse parameters

for the NRLT Landau-Teller reactions for which reverse
parameters were given. RCKWRK(NcRL+(N-1)*NLAR+(L-1)) is the Lth
reverse parameter for the Nth reaction with reverse Landau-Teller
parameters, where

L=1 is B(I) (Eq. 72) (kelvins**1/3), and
L=2 is C(I) (Eq. 72) (kelvins**2/3).

The reaction number is ICKWRK(IcRL+N-1).
- Starting location of an array of the NFAR fall-off parameters

for the NFL fall-off reactions. RCKWRK(NcFL+(N-1)*NFAR+(L-1))
is the Lth fall-off parameter for the Nth fall-off reaction,
where the low pressure limits are defined by

L=1 is the pre-exponential factor (mole-cm-sec-K),
L=2 is the temperature exponent, and
L=3 is the activation energy (kelvins).

Additional parameters define the centering, depending on
the type of formulation -

Troe: L=4 is the Eq. 68 parameter a,
L=5 is the Eq. 68 parameter T***
L=6 is the Eq. 68 parameter T*
L=7 is the Eq. 68 parameter T**
L=4 is the Eq. 69 parameter a,
L=5 is the Eq. 69 parameter b (kelvins),
L=6 is the Eq. 69 parameter c (kelvins),
L=7 is the Eq. 69 parameter d, and
L=8 is the Eq. 69 parameter e.

The reaction number is ICKWRK(IcFL+N-1), and the type
of formulation is ICKWRK(IcFO+N-1).

- Starting location of an array of wavelengths for the NWL
wavelength-enhanced reactions.
RCKWRK(NcWL+N-1) is the wavelength enhancement (angstroms)
for the Nth wavelength-enhanced reaction;
the reaction number is ICKWRK(IcWL+N-1).

- Starting location of an array of MXTB enhancement factors for
the NTHB third-body reactions. RCKWRK(NcKT+(N-1)*MXTB+(L-1))
is the enhancement factor for the Lth enhanced species in the
Nth third-body reaction; the reaction number is ICKWRK(IcTB+N-1),
and the Lth enhanced species index number is
ICKWRK(IcKT+(N-1)*MXTB+L-1).

- RCKWRK(NcRU) is the universal gas constant (ergs/mole-K).
- RCKWRK(NcRC) is the universal gas constant (cal/mole-K).
- RCKWRK(NcPA) is the pressure of one standard atmosphere

(dynes/cm**2).
- Starting addresses of arrays of internal work spaceNcK1

NcK2
NcK3
NcK4
NcI1
NcI2
NcI3
NcI4

NcWL

NcKT

NcRU
NcRC
NcPA

NcFL

NcRL

NcLT

NcRV

NcCO



lelement names
latomic weights

The linking file consists of the following binary records:

1) Index constants and information about 1 inking file:
KERR, LENI, LENR, LENC, NMM, NKK, NIl, MXSP, MXTB,
MXTP, NCP, NPAR, NLAR, NFAR, NREV, NFAL, NTHB,
NLAN, NRLT, NWL, NCHRG
Where KERR logical which indicates if there was

an error in the Chemkin interpreter input.
LENI : required length of ICKWRK.
LENR : required length of RCKWRK.
LENC : required length of CCKWRK.
NCHRG: total number of species with an electronic

charge not equal to zero.

2) Element information:
«CCKWRK(IcMM + M-1),

RCKWRK(NcAW + M-1»,
M: 1, NMM)

3) Species information:
«CCKWRK(IcKK+K-1),

(ICKWRK(IcNC+(K-1)*NMM+M-1),M:1,MMM),
ICKWRK(IcPH+K-1),
ICKWRK(IcCH+K-1),
RCKWRK(NcWT+K-1),
ICKWRK(IcNT+K-1),
(RCKWRK(NcTT+(K-1)*MXTP + L-1),L:1.MXTP),
«RCKWRK(NcAA+(L-1)*NCP2+(K-1)*NCP2T+N-1),

N:1,NCP2), L:1,(MXTP-1»),
K : 1, NKK)

4) Reaction information (if NII>O):
(ICKWRK(IcNS+I-1),

ICKWRK(IcNR+I-1) ,
(RCKWRK(NcCO+(I-1)*NPAR+N-1), N=1,NPAR),
(ICKWRK(IcNU+(I-1)*MXSP+N-1),
ICKWRK(IcNK+(I-1)*MXSP+N-1), N:1,MXSP),
I = 1, NI I )

5) Reverse parameter information (if NREV>O):
(ICKWRK(IcRV+N-1),

(RCKWRK(NcRV+(N-1)*NPAR+L-1),L=1,NPAR),
N : 1, NREV)

6) Fall-off reaction information (if NFAL>O):
(ICKWRK(IcFL+N-1),

ICKWRK(IcFO+N-1),
ICKWRK(IcKF+N-1),
(RCKWRK(NcFL+(N-1)*NFAR+L-1),L:1,NFAR),
N= 1, NFAL)

!species names
!composition
!phase
1charge
lmolecular weight
!# of fit temps
!array of temps
!fit coeff'nts

!# of species
!# of reactants
!Arr. coefficients
!stoic coef
Ispecies numbers

!reaction numbers
!reverse coefficients

!reaction numbers
!fall-off option
13rd-body species
!fall-off parameters

7) Third-body reaction information (if NTHB>O):
(ICKWRK(IcTB+N-1), !reaction numbers

ICKWRK(IcKN+N-1), !# of 3rd bodies
(ICKWRK(IcKT+(N-1)*MXTB+L-1), !3rd-body species
RCKWRK(NcKT+(N-1)*MXTB+L-1),L=1,MXTB), !enhancement factors
N= 1, NTHB)

8) Landau-Teller reaction information (if NLAN>O):
(ICKWRK(IcLT+N-1), !reaction numbers

(RCKWRK(NcLT+(N-1)*NLAR+L-1),L:1,NLAR), IL-T parameters
N= 1, NLAN)

9) Reverse Landau-Teller reaction information
(ICKWRK(IcRL+N-1),

(RCKWRK(NcRL+(N-1)*NLAR+L-1),L=1,NLAR),
N=1,NRLT)

(if NRLT>O):
!reaction numbers
!rev. L-T parameters

10) Photon radiation reaction
(ICKWRK(IcWL+N-1),

RCKWRK(NcWL+N-1),
N= 1, NWL)

information (if NWL>O):
!reaction numbers
!wavelength factor
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lelement names
latomic weights

The linking file consists of the following binary records:

1) Index constants and information about 1 inking file:
KERR, LENI, LENR, LENC, NMM, NKK, NIl, MXSP, MXTB,
MXTP, NCP, NPAR, NLAR, NFAR, NREV, NFAL, NTHB,
NLAN, NRLT, NWL, NCHRG
Where KERR logical which indicates if there was

an error in the Chemkin interpreter input.
LENI : required length of ICKWRK.
LENR : required length of RCKWRK.
LENC : required length of CCKWRK.
NCHRG: total number of species with an electronic

charge not equal to zero.

2) Element information:
«CCKWRK(IcMM + M-1),

RCKWRK(NcAW + M-1»,
M: 1, NMM)

3) Species information:
«CCKWRK(IcKK+K-1),

(ICKWRK(IcNC+(K-1)*NMM+M-1),M:1,MMM),
ICKWRK(IcPH+K-1),
ICKWRK(IcCH+K-1),
RCKWRK(NcWT+K-1),
ICKWRK(IcNT+K-1),
(RCKWRK(NcTT+(K-1)*MXTP + L-1),L:1.MXTP),
«RCKWRK(NcAA+(L-1)*NCP2+(K-1)*NCP2T+N-1),

N:1,NCP2), L:1,(MXTP-1»),
K : 1, NKK)

4) Reaction information (if NII>O):
(ICKWRK(IcNS+I-1),

ICKWRK(IcNR+I-1) ,
(RCKWRK(NcCO+(I-1)*NPAR+N-1), N=1,NPAR),
(ICKWRK(IcNU+(I-1)*MXSP+N-1),
ICKWRK(IcNK+(I-1)*MXSP+N-1), N:1,MXSP),
I = 1, NI I )

5) Reverse parameter information (if NREV>O):
(ICKWRK(IcRV+N-1),

(RCKWRK(NcRV+(N-1)*NPAR+L-1),L=1,NPAR),
N : 1, NREV)

6) Fall-off reaction information (if NFAL>O):
(ICKWRK(IcFL+N-1),

ICKWRK(IcFO+N-1),
ICKWRK(IcKF+N-1),
(RCKWRK(NcFL+(N-1)*NFAR+L-1),L:1,NFAR),
N= 1, NFAL)

!species names
!composition
!phase
1charge
lmolecular weight
!# of fit temps
!array of temps
!fit coeff'nts

!# of species
!# of reactants
!Arr. coefficients
!stoic coef
Ispecies numbers

!reaction numbers
!reverse coefficients

!reaction numbers
!fall-off option
13rd-body species
!fall-off parameters

7) Third-body reaction information (if NTHB>O):
(ICKWRK(IcTB+N-1), !reaction numbers

ICKWRK(IcKN+N-1), !# of 3rd bodies
(ICKWRK(IcKT+(N-1)*MXTB+L-1), !3rd-body species
RCKWRK(NcKT+(N-1)*MXTB+L-1),L=1,MXTB), !enhancement factors
N= 1, NTHB)

8) Landau-Teller reaction information (if NLAN>O):
(ICKWRK(IcLT+N-1), !reaction numbers

(RCKWRK(NcLT+(N-1)*NLAR+L-1),L:1,NLAR), IL-T parameters
N= 1, NLAN)

9) Reverse Landau-Teller reaction information
(ICKWRK(IcRL+N-1),

(RCKWRK(NcRL+(N-1)*NLAR+L-1),L=1,NLAR),
N=1,NRLT)

(if NRLT>O):
!reaction numbers
!rev. L-T parameters

10) Photon radiation reaction
(ICKWRK(IcWL+N-1),

RCKWRK(NcWL+N-1),
N= 1, NWL)

information (if NWL>O):
!reaction numbers
!wavelength factor
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